G. Phanikumar, K. Chattopadhyay and Pradip Dutta
The transport phenomena (heat transfer, fluid flow and species distribution) are numerically modelled for the case of laser welding of dissimilar metals. The model involves…
Abstract
The transport phenomena (heat transfer, fluid flow and species distribution) are numerically modelled for the case of laser welding of dissimilar metals. The model involves convection in the weld pool along with melting and mixing. The associated metallurgical phenomenon is an extremely complex one, and the present work is a preliminary attempt to model the process after making suitable assumptions. The numerical study is performed using a pressure based finite volume technique after making appropriate modifications to the algorithm to include the associated phase change processes and dissimilarity in the metal properties. The phase change process is modelled using an enthalpy‐porosity technique, while the dissimilar metal properties are handled using appropriate mixture theories. As a case study, we have used dissimilar couples of copper‐nickel. It is observed that the weld pool shape becomes asymmetric even when the heat source is symmetrically applied on the two metals forming the couple. As the weld pool develops, the side melting earlier is found to experience more convection and better mixing. Corresponding experiments are performed using the same parameters as in the computations, showing a good qualitative agreement between the two results. A scale analysis is performed to predict the time scale of initiation of melting of each metal. The scale‐analysis predictions show a good agreement with the numerical results.
Details
Keywords
Amrit Raj Paul, Manidipto Mukherjee and Mohit Kumar Sahu
The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This…
Abstract
Purpose
The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties.
Design/methodology/approach
The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall.
Findings
The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al2Cu and Al4Cu9. The study also observed the formation of a lamellar structure of Al and Al2Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface.
Originality/value
The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.
Details
Keywords
Dan Zhang, Yanhong Wei, Xiaohong Zhan, Jie Chen, Hao Li and Yuhua Wang
This paper aims to describe a three-dimensional mathematical and numerical model based on finite volume method to simulate the fluid dynamics in weld pool, droplet transfer and…
Abstract
Purpose
This paper aims to describe a three-dimensional mathematical and numerical model based on finite volume method to simulate the fluid dynamics in weld pool, droplet transfer and keyhole behaviors in the laser-MIG hybrid welding process of Fe36Ni Invar alloy.
Design/methodology/approach
Double-ellipsoidal heat source model and adaptive Gauss rotary body heat source model were used to describe electric arc and laser beam heat source, respectively. Besides, recoil pressure, electromagnetic force, Marangoni force, buoyancy as well as liquid material flow through a porous medium and the heat, mass, momentum transfer because of droplets were taken into consideration in the computational model.
Findings
The results of computer simulation, including temperature field in welded plate and velocity field in the fusion zone were presented in this article on the basis of the solution of mass, momentum and energy conservation equations. The correctness of elaborated models was validated by experimental results and this proposed model exhibited close correspondence with the experimental results with respect to weld geometry.
Originality/value
It lays foundation for understanding the physical phenomena accompanying hybrid welding and optimizing the process parameters for laser-MIG hybrid welding of Invar alloy.
Details
Keywords
Dipankar Chatterjee and Suman Chakraborty
The purpose of this paper is to carry out a systematic energy analysis for predicting the first and second law efficiencies and the entropy generation during a laser surface…
Abstract
Purpose
The purpose of this paper is to carry out a systematic energy analysis for predicting the first and second law efficiencies and the entropy generation during a laser surface alloying (LSA) process.
Design/methodology/approach
A three‐dimensional transient macroscopic numerical model is developed to describe the turbulent transport phenomena during a typical LSA process and subsequently, the energy analysis is carried out to predict the entropy generation as well as the first and second law efficiencies. A modified k–ε model is used to address turbulent molten metal‐pool convection. The phase change aspects are addressed using a modified enthalpy‐porosity technique. A kinetic theory approach is adopted for modelling evaporation from the top surface of the molten pool.
Findings
It is found that the heat transfer due to the strong temperature gradient is mainly responsible for the irreversible degradation of energy in the form of entropy production and the flow and mass transfer effects are less important for this type of phase change problem. The first and second law efficiencies are found to increase with effective heat input and remain independent of the powder feed rate. With the scanning speed, the first law efficiency increases whereas the second law efficiency decreases.
Research limitations/implications
The top surface undulations are not taken care of in this model which is a reasonable approximation.
Practical implications
The results obtained will eventually lead to an optimized estimation of laser parameters (such as laser power, scanning speed, etc.), which in turn improves the process control and reduces the cost substantially.
Originality/value
This paper provides essential information for modelling solid–liquid phase transition as well as a systematic analysis for entropy generation prediction.
Details
Keywords
Abhishek Sharma and Ravi Kumar Sharma
The purpose of this paper is to provide a cost-effective foundation technique for the design of foundations of transmission towers, heavily loaded structures, etc.
Abstract
Purpose
The purpose of this paper is to provide a cost-effective foundation technique for the design of foundations of transmission towers, heavily loaded structures, etc.
Design/methodology/approach
Experimental model tests are conducted in a model test tank to find out the effect of length and diameter of geogrid encased granular pile anchors, the relative density of sand and the angle of inclination of the pile from the vertical on uplift behavior of granular pile anchors.
Findings
The uplift capacity of the geogrid encased granular pile anchor increased with increasing length and diameter of granular pile anchor. Further, increasing the relative density of surrounding soil increased uplift capacity of geogrid encased granular pile anchor system. Moreover, increasing the angle of inclination of loading also increased uplift capacity of whole system. Thus, the proposed system can be effectively used in field for further applications.
Originality/value
The paper is helpful for the engineers looking for cost-effective foundation techniques for heavily loaded structures.
Details
Keywords
O. Momin, S.Z. Shuja and B.S. Yilbas
A model study of laser heating process including phase change and molten flow in the melt pool gives physical insight into the process and provides useful information on the…
Abstract
Purpose
A model study of laser heating process including phase change and molten flow in the melt pool gives physical insight into the process and provides useful information on the influence of melting parameters. In addition, the predictions reduce the experimental cost and minimize the experimental time. Consequently, investigation into laser control melting of the titanium alloy becomes essential. The purpose of this paper is to do this.
Design/methodology/approach
Laser repetitive pulse heating of titanium surface is investigated and temperature field as well as Marangoni flow in the melt pool is predicted using finite volume approach. The influence of laser scanning speed and laser pulse parameter (defining the laser pulse intensity distribution at the workpiece surface) on temperature distribution and melt size is examined. The experiment is carried out to validate temperature predictions for two consecutive laser pulses.
Findings
The influence of laser scanning speed is significant on the melt pool geometry, which is more pronounced for the laser pulse parameter β=0. Temperature predictions agree with the thermocouple data obtained from the experiment.
Research limitations/implications
Although temperature dependent properties are used in the simulations, isotropy in properties may limit the simulations. The laser canning speed is limited to 0.3 m/s, which is good for surface treatment process, but it may slow for annealing treatments.
Practical implications
The results are very useful to capture insight into the melting process. In addition, the influence of laser scanning speed and laser pulse intensity distribution on the melt formation in the surface vicinity is well presented, which will be useful for those working on laser surface treatment process.
Originality/value
The work is original and findings are new, which demonstrate the influence of laser parameters on the melt pool formation and resulting Marangoni flow.
Saeed Alizadeh, Mohammad Farhadi-Kangarlu and Behrouz Tousi
Multilevel inverters (MLIs) have been studied widely over the past two decades because of their inherent advantages and interesting features. However, most of the newly introduced…
Abstract
Purpose
Multilevel inverters (MLIs) have been studied widely over the past two decades because of their inherent advantages and interesting features. However, most of the newly introduced structures suffer from the increased standing voltage of the switches, which is defined as the maximum off-state voltage on the switches, losing modularity and increased number of direct current (DC) voltage sources. The purpose of this study is to propose a new hybrid MLI topology to alleviate the mentioned problems.
Design/methodology/approach
The proposed approach in this study includes using the advantage of two different topologies and combine them in a way that the advantages of both of the topologies are achieved. Therefore, the approach is to design a hybrid topology from two existing topologies so that a new topology has resulted.
Findings
This paper proposes a new hybrid MLI with lower power electronic switches and lowers DC voltage sources in comparison with the classic structures. The proposed MLIs maintain a balance between the number of switches, the standing voltage on the switches and the number of DC sources. The topology description, modulation method and comparative study have been presented. Also, another more reduced structure is presented for higher power factor operation. The MATLAB simulation and experimental results of a nine-level inverter have been presented to verify its operation.
Originality/value
The hybrid topology has a new structure that has not been presented before. It is important to emphasize that the topology combination and achieving the hybrid topology is wisely accomplished to improve some features of the MLI.
Details
Keywords
Chinnaraj Gnanavel and Kumarasamy Vanchinathan
These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and…
Abstract
Purpose
These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and control schemes for multilevel inverter (MLI) topologies. Reduced harmonic modulation technology is used to produce 11-level output voltage with the production of renewable energy applications. The simulation is done in the MATLAB/Simulink for 11-level symmetric MLI and is correlated with the conventional inverter design.
Design/methodology/approach
This paper is focused on investigating the different types of asymmetric, symmetric and hybrid topologies and control methods used for the modular multilevel inverter (MMI) operation. Classical MLI configurations are affected by performance issues such as poor power quality, uneconomic structure and low efficiency.
Findings
The variations in both carrier and reference signals and their performance are analyzed for the proposed inverter topologies. The simulation result compares unipolar and bipolar pulse-width modulation (PWM) techniques with total harmonic distortion (THD) results. The solar-fed 11-level MMI is controlled using various modulation strategies, which are connected to marine emergency lighting loads. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by using SPARTAN 3A field programmable gate array (FPGA) board and the least harmonics are obtained by improving the power quality.
Originality/value
The simulation result compares unipolar and bipolar PWM techniques with THD results. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by a SPARTAN 3A field programmable gate array (FPGA) board, and the power quality is improved to achieve the lowest harmonics possible.
Details
Keywords
Avinash Bhardwaj and Ravi Kumar Sharma
The purpose of this paper is to attempt to use two industrial wastes; waste foundry sands (WFS) and molasses (M) along with lime (L) to improve the strength characteristics of…
Abstract
Purpose
The purpose of this paper is to attempt to use two industrial wastes; waste foundry sands (WFS) and molasses (M) along with lime (L) to improve the strength characteristics of clayey soil.
Design/methodology/approach
In the first part of the study, the optimum percentages of materials (WFS, molasses, lime) have been found out by conducting differential free swell (DFS) and consistency limit tests on clayey soil by adding various admixtures. The second and third part of the study investigates the compaction behaviour and unconfined compressive strength (UCS) of clayey soil on addition of optimum amount of various materials alone and in combination with each other. Finally, the micro-structural behaviour of addition of optimum percentages of lime, WFS and molasses using Scanning electron microscopic technique has been discussed.
Findings
The laboratory results revealed that the addition of optimum content of lime along with WFS and molasses reduced DFS and plasticity index and increased maximum dry density and UCS values. The microstructural behaviour showed that the presence of lime and molasses filled the voids present in the soil and the addition of WFS helped in providing compact structure, thus improving the strength characteristics.
Practical implications
The study will be helpful in designing low-cost pavement designs for rural roads.
Social implications
The adverse effect of waste materials on environment may be solved by using them in improving the strength characteristics of clayey soils, thereby providing healthy environment to living beings.
Originality/value
The study will help to provide low-cost methods to improve strength characteristics of clayey soil along with the use of waste materials; the disposal of whose is a challenging task.
Details
Keywords
Vibhas Sukhwani and Rajib Shaw
In spite of the growing usage of “water security” as a policy template, the sustainable delivery of adequate quantity/quality of water remains a major challenge, specifically in…
Abstract
Purpose
In spite of the growing usage of “water security” as a policy template, the sustainable delivery of adequate quantity/quality of water remains a major challenge, specifically in the rural areas of developing countries. Focusing on the specific case of Nagpur (India), this study aims to establish a broader understanding of rural water security and (water supply) system sustainability issues at grassroots-level.
Design/methodology/approach
Taking due account of the existing assessment methods and the study context of Nagpur, contextualized indicator-based frameworks have been developed for conjointly assessing both the research subjects. Within the identified eight rural clusters (comprising 72 settlements), focus group discussions (with the residents) and semi-structured interviews [with the members of village water and sanitation committees) (VWSCs)] are then conducted to methodically investigate the local stakeholder perception.
Findings
Through the rural water security (state change) assessment in selected settlements, the water accessibility indicators are consistently reported to have witnessed mostly positive changes, whereas contrasting changes have been reported for various indicators of availability, quality and risks. Superimposing these findings with those of system sustainability assessment (e.g. only 56% VWSCs are reported to be actively functioning), it has been realized that the sustainability of water supply systems is imperative to attain water security goals in the long term.
Originality/value
Through the conjoint assessment of water security and system sustainability issues, this research responds to the growing call for a broader consideration of these concepts. Moreover, it reports practical ground-level challenges based on primary surveys.