Forensic dentistry is the application of dentistry in legal proceedings that arise from any facts relating to teeth. The ultimate goal of forensic odontology is to identify the…
Abstract
Purpose
Forensic dentistry is the application of dentistry in legal proceedings that arise from any facts relating to teeth. The ultimate goal of forensic odontology is to identify the individual when there are no other means of identification such as fingerprint, Deoxyribonucleic acid (DNA), iris, hand print and leg print. The purpose of selecting dental record is for the teeth to be able to withstand decomposition, heat degradation up to 1600 °C. Dental patterns are unique for every individual. This work aims to analyze the contour shape extraction and texture feature extraction of both radiographic and photographic dental images for person identification.
Design/methodology/approach
To achieve an accurate identification of individuals, the missing tooth in the radiograph has to be identified before matching of ante-mortem (AM) and post-mortem (PM) radiographs. To identify whether the missing tooth is a molar or premolar, each tooth in the given radiograph has to be classified using a k-nearest neighbor (k-NN) classifier; then, it is matched with the universal tooth numbering system. In order to make exact person identification, this research work is mainly concentrate on contour shape extraction and texture feature extraction for person identification. This work aims to analyze the contour shape extraction and texture feature extraction of both radiographic and photographic images for individual identification. Then, shape matching of AM and PM images is performed by similarity and distance metric for accurate person identification.
Findings
The experimental results are analyzed for shape and feature extraction of both radiographic and photographic dental images. From this analysis, it is proved that the higher hit rate performance is observed for the active contour shape extraction model, and it is well suited for forensic odontologists to identify a person in mass disaster situations.
Research limitations/implications
Forensic odontology is a branch of human identification that uses dental evidence to identify the victims. In mass disaster circumstances, contours and dental patterns are very useful to extract the shape in individual identification.
Originality/value
The experimental results are analyzed both the contour shape extraction and texture feature extraction of both radiographic and photographic images. From this analysis, it is proved that the higher hit rate performance is observed for the active contour shape extraction model and it is well suited for forensic odontologists to identify a person in mass disaster situations. The findings provide theoretical and practical implications for individual identification of both radiographic and photographic images with a view to accurate identification of the person.
Details
Keywords
Snehal R. Rathi and Yogesh D. Deshpande
Affective states in learning have gained immense attention in education. The precise affective-states prediction can increase the learning gain by adapting targeted interventions…
Abstract
Purpose
Affective states in learning have gained immense attention in education. The precise affective-states prediction can increase the learning gain by adapting targeted interventions that can adjust the changes in individual affective states of students. Several techniques are devised for predicting the affective states considering audio, video and biosensors. Still, the system that relies on analyzing audio and video cannot certify anonymity and is subjected to privacy problems.
Design/methodology/approach
A new strategy, termed rider squirrel search algorithm-based deep long short-term memory (RiderSSA-based deep LSTM) is devised for affective-state prediction. The deep LSTM training is done by the proposed RiderSSA. Here, RiderSSA-based deep LSTM effectively predicts the affective states like confusion, engagement, frustration, anger, happiness, disgust, boredom, surprise and so on. In addition, the learning styles are predicted based on the extracted features using rider neural network (RideNN), for which the Felder–Silverman learning-style model (FSLSM) is considered. Here, the RideNN classifies the learners. Finally, the course ID, student ID, affective state, learning style, exam score and course completion are taken as output data to determine the correlative study.
Findings
The proposed RiderSSA-based deep LSTM provided enhanced efficiency with elevated accuracy of 0.962 and the highest correlation of 0.406.
Originality/value
The proposed method based on affective prediction obtained maximal accuracy and the highest correlation. Thus, the method can be applied to the course recommendation system based on affect prediction.