G. Chiandussi, R. Fontana and F. Urbinati
A method to solve shape and size optimisation problems with linear and non‐linear responses has been studied taking advantage of statistical methodologies. A nested optimisation…
Abstract
A method to solve shape and size optimisation problems with linear and non‐linear responses has been studied taking advantage of statistical methodologies. A nested optimisation procedure has been fixed. The global optimisation problem is decomposed in several subproblems where each non‐linear response is locally approximated with a first degree polynomial function identified by the definition and execution of an experimental plan. The approximating functions so obtained are used to evaluate the design sensitivity coefficients required by the optimisation procedure. The numerical results obtained during the optimisation process to verify exactly the value of the non‐linear responses are used to verify and to improve the approximating function accuracy. The non‐linear design sensitivity analysis method so defined has been used to solve a multidisciplinary shape optimisation problem involving a real 3D automotive structure.
Details
Keywords
The paper focuses on two topics, optimizing the proposed triangular tube for crashworthiness and solving a non‐linear programming problem by a “mapping” technique, which the…
Abstract
The paper focuses on two topics, optimizing the proposed triangular tube for crashworthiness and solving a non‐linear programming problem by a “mapping” technique, which the condition of Lagrange Multiplier Theorem is violated within the feasible region. The purpose of studying optimized triangular tubes is to prepare them for redesigning vehicle bumpers. The dimension optimization of triangular tube is carried out for its thickness and lateral length, based on the accomplished shape optimization under an impact. The load uniformity is taken as the objective function, which is defined as the ratio of maximum peak force and means crushing force. Meanwhile the mean crushing force and absorbed energy are treated as constraints. Based on FEA analysis, the regression functions for load uniformity, mean crushing force, and absorbed energy are formulated by RSM. The result has shown that triangular tube possesses an optimization region, under which the better‐integrated property can be achieved to supply a more safety environment for vehicular occupants.
Details
Keywords
Andrej Škrlec and Jernej Klemenc
In conditions where a product is subjected to extreme mechanical loading in a very short time, a strain rate has a significant influence on the behaviour of the product’s…
Abstract
Purpose
In conditions where a product is subjected to extreme mechanical loading in a very short time, a strain rate has a significant influence on the behaviour of the product’s material. To accurately simulate the behaviour of the material during these loading conditions, the strain rate parameters of the selected material model should be appropriately used. This paper aims to present a fast method with which the proper strain-rate-dependent parameter values of the selected material model can be easily determined.
Design/methodology/approach
In the paper, an experiment was designed to study the behaviour of thin, flat, metal sheets during an impact. The results from this experiment were the basis for the determination of the strain-rate-dependent parameter values of the Cowper–Symonds material model. Optimisation processes with different numbers of required parameters of the selected material model were performed. The optimisation process consists of the method for design of experiment, modelling a response surface and a genetic algorithm.
Findings
The paper provides comparison of two optimisation processes with different methods for design of experiment. The performances of the presented method are compared and the engineering applicability of the results is discussed.
Originality/value
This paper presents a new fast approach for the identification of the parameter values of the Cowper–Symonds material model, if these cannot be easily determined directly from experimental data.
Details
Keywords
Alessandro Tufano, Riccardo Accorsi and Riccardo Manzini
This paper addresses the trade-off between asset investment and food safety in the design of a food catering production plant. It analyses the relationship between the quality…
Abstract
Purpose
This paper addresses the trade-off between asset investment and food safety in the design of a food catering production plant. It analyses the relationship between the quality decay of cook-warm products, the logistics of the processes and the economic investment in production machines.
Design/methodology/approach
A weekly cook-warm production plan has been monitored on-field using temperature sensors to estimate the quality decay profile of each product. A multi-objective optimisation model is proposed to (1) minimise the number of resources necessary to perform cooking and packing operations or (2) to maximise the food quality of the products. A metaheuristic simulated annealing algorithm is introduced to solve the model and to identify the Pareto frontier of the problem.
Findings
The packaging buffers are identified as the bottleneck of the processes. The outcome of the algorithms highlights that a small investment to design bigger buffers results in a significant increase in the quality with a smaller food loss.
Practical implications
This study models the production tasks of a food catering facility to evaluate their criticality from a food safety perspective. It investigates the tradeoff between the investment cost of resources processing critical tasks and food safety of finished products.
Social implications
The methodology applies to the design of cook-warm production. Catering companies use cook-warm production to serve school, hospitals and companies. For this reason, the application of this methodology leads to the improvement of the quality of daily meals for a large number of people.
Originality/value
The paper introduces a new multi-objective function (asset investment vs food quality) proposing an original metaheuristic to address this tradeoff in the food catering industry. Also, the methodology is applied and validated in the design of a new food production facility.
Details
Keywords
Rogério Lopes, Francisco Barros, Francisco Q. de Melo, Nuno V. Ramos, Rafael Cunha, Ricardo Maia, Rui Rodrigues, M.P.L. Parente and P.M.G. Moreira
The vehicle´s body front pillar should absorb most of the striker kinetic energy, while only a fraction of that is absorbed by the door structure. This study aims to discuss the…
Abstract
Purpose
The vehicle´s body front pillar should absorb most of the striker kinetic energy, while only a fraction of that is absorbed by the door structure. This study aims to discuss the aforementioned issue. In this test the striker is a virtual entity. Six uniaxial strain gauges are installed throughout the door. Additionally, contactless 3D digital image correlation (DIC) allows to assess the major door panel’s continuous deformation and strain fields.
Design/methodology/approach
A coach is a large and heavy long-distance passenger transport vehicle. Their structural certification, classifies coaches as M3 Class III vehicles. New coach structures’ designs need analyses of each sub-system for critical pre-validation of the entire structure, aiming driver and passenger carrier safety. Also, a thorough examination due to increased travel speed is needed.
Findings
Experimental pseudo-dynamic (PSD) results were compared and validated using finite element method (FEM) with two pieces of distinct FEM software (Abaqus® and PamCrash®). The time dependent solution was carried out by explicit techniques. Results by FEM and PSD test showed good agreement, evidencing the reliability of the tools selected. Results by PamCrash® were closer to the experimental data.
Practical implications
R-29 is truck-only regulation, however can be adapted to coaches in case of a frontal collision. The present work focuses on the impact behavior of the passenger front door subsystem.
Originality/value
As a first validation the entire structure, the behavior of a vehicle door, under in-plane impacts was studied. The corresponding deformation energy absorbed by the frontal passenger coach door under virtual impacts of a swinging striker was assessed using a PSD approach.
Details
Keywords
Duncan Macdougall and Nikica Petrinic
A local optimisation method for obtaining material parameters in finite element simulations has been developed. The method is based on the minimisation of an error function which…
Abstract
A local optimisation method for obtaining material parameters in finite element simulations has been developed. The method is based on the minimisation of an error function which reflects the accuracy of a numerical prediction with respect to the results of simple specimen tests. The experimental data were obtained from high strain rate tensile tests on the alloy 90 per cent titanium – 6 per cent aluminium – 4 per cent vanadium (Ti6Al4V) using the tensile split‐Hopkinson pressure bar. The behaviour of the tensile specimen was monitored during the test using high‐speed photography and transient recorders. Finite element simulations were performed using ABAQUS/Explicit employing the Zerilli‐Armstrong material model for bcc metals).
Details
Keywords
Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing…
Abstract
Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.
Details
Keywords
Zimou Tang, Min Yang, Jianxiong Xiao, Zheng Shen, Liming Tang and Jibin Wang
This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.
Abstract
Purpose
This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.
Design/methodology/approach
Based on a case study of the traction transformers, virtual fatigue test (VFT) was proposed via numerical simulation approach. Static analysis was conducted to identify the risky zone and then dynamic response of the risky welds under random vibration load was calculated based on frequency-domain structural stress method (FDSSM) theory, life distribution and associated survivability at various locations of the structure were obtained. Structural modification was finally performed according to the evaluation results. Moreover, experimental test was carried out and compared with the virtual test result.
Findings
By applying the virtual test, fatigue life of the complex welded structures on large-scale equipment can be accurately and efficiently obtained considering dynamic effect under random vibration load. Meanwhile, risky welds can be directly determined and targeted modification scheme can be accordingly concluded. Validity of the VFT result was proved by comparing with the experimental test.
Originality/value
The proposed method can help obtain equivalent structural stress and fatigue life distribution of the welded structure at any position with various survivability and make quantitative evaluation on the life-extending effect of the structural modification. This method shows significant cost and efficiency advantages over experimental test during design stage of the large-scale structures in numerous manufacturing industries.
Details
Keywords
Daniyal Sayadi, Hossein Rangrizian, Alireza Khodabandeh, Mohammadreza Khosrojerdi, Mohsen Khajehzadeh and Mohammad Reza Razfar
In this study, two postprocessing techniques, namely, conventional burnishing (CB) and ultrasonic-assisted burnishing (UAB), were applied to improve the fatigue behavior of 316 L…
Abstract
Purpose
In this study, two postprocessing techniques, namely, conventional burnishing (CB) and ultrasonic-assisted burnishing (UAB), were applied to improve the fatigue behavior of 316 L stainless steel fabricated through selective laser melting (SLM). The effects of these processes on surface roughness, porosity, microhardness and fatigue performance were experimentally investigated. The purpose of this study is to evaluate the feasibility and effectiveness of ultrasonic-assisted burnishing as a preferred post-processing technique for enhancing the fatigue performance of additively manufactured components.
Design/methodology/approach
All samples were subjected to a sandblasting process. Next, the samples were divided into three distinct groups. The first group (as-Built) did not undergo any additional postprocessing, apart from sandblasting. The second group was treated with CB, while the third group was treated with ultrasonic-assisted burnishing. Finally, all samples were evaluated based on their surface roughness, porosity, microhardness and fatigue performance.
Findings
The results revealed that the initial mean surface roughness (Ra) of the as-built sample was 11.438 µm. However, after undergoing CB and UAB treatments, the surface roughness decreased to 1.629 and 0.278 µm, respectively. Notably, the UAB process proved more effective in eliminating near-surface pores and improving the microhardness of the samples compared to the CB process. Furthermore, the fatigue life of the as-built sample, initially at 66,000 cycles, experienced a slight improvement after CB treatment, reaching 347,000 cycles. However, the UAB process significantly enhanced the fatigue life of the samples, extending it to 620,000 cycles.
Originality/value
After reviewing the literature, it can be concluded that UAB will exceed the capabilities of CB in terms of enhancing the surface roughness and, subsequently, the fatigue performance of additive manufactured (AM) metals. However, the actual impact of the UAB process on the fatigue life of AM products has not yet been thoroughly researched. Therefore, in this study, this paper used the burnishing process to enhance the fatigue life of 316 L stainless steel produced through the SLM process.
Details
Keywords
Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang
The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…
Abstract
Purpose
The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.
Design/methodology/approach
Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).
Findings
The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.
Originality/value
The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.