N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy and K. Manonmani
This paper presents the influence of beam incidence angle on austenitic stainless steel sheet subjected to a high density laser beam having Gaussian power density distribution…
Abstract
This paper presents the influence of beam incidence angle on austenitic stainless steel sheet subjected to a high density laser beam having Gaussian power density distribution. Bead‐on trials are conducted on 3.15 mm thick commercial AISI 304 austenitic stainless steel sheet using a Nd:YAG laser source with a maximum output of 2kW in the continuous wave mode. The effects of beam incident angle on the weld bead geometry are studied using finite element analysis. Experiments are conducted with 600, 1000 and 1400W laser power and 800, 1400 and 2000mm/min welding speed. A three dimensional finite element model is developed for the simulation of non‐linear transient thermal analysis of the weld bead geometry for different beam incident angles using the finite element code ANSYS. The result reveals that by increasing the beam incident angle with constant beam power and welding speed, there is a considerable reduction in the depth of penetration‐to‐width ratio (d/w). Further, it is noticed that the process enters into conduction mode of welding from the keyhole mode of welding as the beam angle is increased beyond 10o. The comparison of the simulation results and the experimental data for weld bead geometry with different beam incident angles show good agreement.
Details
Keywords
S. Arungalai Vendan, S. Manoharan, G. Buvanashekaran and C. Nagamani
This paper proposes a 3‐Dimensional Finite Element Model (FEM) for the simulation of magnetic flux distribution in a Magnetically Impelled Arc Butt (MIAB) welding process. The…
Abstract
This paper proposes a 3‐Dimensional Finite Element Model (FEM) for the simulation of magnetic flux distribution in a Magnetically Impelled Arc Butt (MIAB) welding process. The electromagnetic force responsible for the arc rotation in MIAB welding process is governed by the magnetic flux density in the gap, the arc current and the arc length (gap size). To be precise the radial magnetic flux density is a critical factor in arc rotation and weld quality. The aim of this study is to explore the interdependence of the magnetic flux density and the existing current in the coils using finite element code ANSYS. The results of this analysis are verified with the available experimental data for steel pipes (outer dia 50mm and 2mm thickness). The results of the numerical simulation emphasize that the magnetic flux density in the gap between the pipes is proportional to the exciting current.
Details
Keywords
Waseem Arif, Hakim Naceur, Sajjad Miran, Nicolas Leconte and Eric Markiewicz
The purpose of this study is to develop an elasto-plastic multi-material shell model by which finite element analysis of laser welded joints is carried out at the interface of the…
Abstract
Purpose
The purpose of this study is to develop an elasto-plastic multi-material shell model by which finite element analysis of laser welded joints is carried out at the interface of the heat-affected zone and base material.
Design/methodology/approach
The multi-material shell model is implemented on the simple cantilever and double cantilever welded plates to examine the efficiency of the developed model.
Findings
By reducing the computational time approximately 20 times with the developed model, the results obtained in the form of von Mises stress and equivalent plastic strain are found in good agreement as compared with the reference solid model.
Originality/value
The accurate and fast prediction of the stresses and strains in the laser welded joints, and the developed multi-material model is helpful to simulate complex industrial welded structures.
Details
Keywords
Mayur Pratap Singh, Pavan Kumar Meena, Kanwer Singh Arora, Rajneesh Kumar and Dinesh Kumar Shukla
This paper aims to measure peak temperatures and cooling rates for distinct locations of thermocouples in the butt weld joint of mild steel plates. For experimental measurement of…
Abstract
Purpose
This paper aims to measure peak temperatures and cooling rates for distinct locations of thermocouples in the butt weld joint of mild steel plates. For experimental measurement of peak temperatures, K-type thermocouples coupled with a data acquisition system were used at predetermined locations. Thereafter, Rosenthal’s analytical models for thin two-dimensional (2D) and thick three-dimensional (3D) plates were adopted to predict peak temperatures for different thermocouple positions. A finite element model (FEM) based on an advanced prescribed temperature approach was adopted to predict time-temperature history for predetermined locations of thermocouples.
Design/methodology/approach
Comparing experimental and Rosenthal analytical models (2D and 3D) findings show that predicted and measured peak temperatures are in close agreement, while cooling rates predicted by analytical models (2D, 3D) show significant variation from measured values. On the other hand, 3D FEM simulation predicted peak temperatures and cooling rates for different thermocouple positions are close to experimental findings.
Findings
The inclusion of filler metal during simulation of welding rightly replicates the real welding situation and improves outcomes of the analysis.
Originality/value
The present study is an original contribution to the field of welding technology.
Details
Keywords
Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang
The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…
Abstract
Purpose
The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.
Design/methodology/approach
External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.
Findings
In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.
Originality/value
However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.
Details
Keywords
Niranjan Chikkanna, Shankar Krishnapillai and Velmurugan Ramachandran
Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve…
Abstract
Purpose
Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve the indentation performance of the re-entrant diamond auxetic metamaterial by tuning the structural parameters that have not been reported.
Design/methodology/approach
The design of experiment strategy was adopted to study the influence of re-entrant angle, diamond angle and thickness-to-length ratio on relative density, load, stiffness and specific energy absorption (SEA) during indentation experimentally. Grey relational analysis was chosen as a multi-objective optimisation technique to optimise structural performance. Surrogate models were proposed to uphold the metamaterial’s tailorability for desired application needs. The fit and efficacy of the proposed models were tested using specific statistical techniques. The predominant deformation mechanisms observed with the alteration in structural parameters were discussed.
Findings
The improvements noticed are 48 times hike in load, 112 times improvement in stiffness and 10 times increase in SEA for optimised structures. The surrogate models are proven to predict the outputs accurately for new input parameters. In-situ displacement fields are visualised with an image processing technique.
Originality/value
To the best of the authors’ knowledge, the indentation performance of the re-entrant diamond auxetic metamaterials has not been reported and reported for the first time. The influence of geometrical parameters on the newly developed structure under concentrated loading was evaluated. The geometry-dependent printing variations associated with 3D printing have been discussed to help the user to fabricate re-entrant diamond auxetic metamaterial.
Details
Keywords
Zhaoyu Ku, Qiwen Xue, Gaping Wang and Shuang Liu
Aiming at the problems of poor accuracy and limitation in strength assessment of spot welding vehicle body caused by uncertain factors, such as key component size and nugget…
Abstract
Purpose
Aiming at the problems of poor accuracy and limitation in strength assessment of spot welding vehicle body caused by uncertain factors, such as key component size and nugget diameter, the numerical models of strength uncertainty analysis of spot-welded joints were constructed based on evidence theory and fuzzy theory.
Design/methodology/approach
Evidence theory and fuzzy theory are used to deal with the uncertainty of design parameter, and differential evolution algorithms are used to calculate the propagation process of uncertainty in this model. Furthermore, efficient relationship between the strength of welded joints and each design parameter is constructed by using response surface proxy model, which effectively avoids the problem of repeated complex finite element analysis in uncertainty analysis.
Findings
The results show that the constructed uncertainty numerical model is effective for the multiple uncertainties and give interval results under different probabilities and affiliations, which can more effectively evaluate the strength of the welded body structure to avoid overly conservative estimates for deterministic design.
Originality/value
The evidence theory is improved and combined with differential evolution algorithm and response surface method to effectively improve the computational efficiency. Based on the improved evidence theory and fuzzy algorithm, the numerical models for the uncertainty analysis of solder joint strength of welded structures are constructed and their feasibility is verified.
Details
Keywords
B. S. Yilbas, Ihsan-ul-Haq Toor, Jahanzaib Malik and F. Patel
The purpose of the present study is to report the results of the laser treatment of high-strength low-alloy (HSLA) steel surface and corrosion response of the treated surface that…
Abstract
Purpose
The purpose of the present study is to report the results of the laser treatment of high-strength low-alloy (HSLA) steel surface and corrosion response of the treated surface that was carried out. Metallurgical and morphological changes in the laser-treated layer are also examined. Laser treatment of the alloy surface improves the surface properties; however, development of high thermal stress field in the treated layer can exceed the yielding limit of the alloy lowers, particularly, the corrosion resistance of the resulting surface.
Design/methodology/approach
Pre-prepared workpiece surfaces are laser-treated and electrochemically tested in an electrolytic solution. Corrosion rate of the resulting surface is analyzed and pit sites are examined.
Findings
It is found that the presence of nitride compounds and fine grains acts like as a self-protective layer at the laser-treated surface while lowering the corrosion resistance. Consequently, laser gas-assisted treatment provides a positive effect on the corrosion properties of the treated surface through lowering the corrosion current. The pits are shallow and do not form a regular pattern at the workpiece surface. The secondary pitting is prevented by the protective layer formed at the laser-treated surface.
Research limitations/implications
The study can be extended to include laser treatment including the hard particles, such as carbides, at the surface. However, this extension is left to another study.
Practical implications
Laser treatment can be used for protection of surfaces from wear and corrosive environments. The findings of this study give insight into the improvement of the surface characteristics for this purpose. It serves to industry for the practical solution of the surface protection from corrosive environments.
Social implications
The researchers and scientists working in the area get the benefit from the outcome of this work.
Originality/value
It is an original work and gives insight into the enhancement of the corrosion resistance of HSLA steel after the laser treatment process.