Search results

1 – 10 of 21
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 April 1988

G. Belingardi, P.M. Calderale, G. Cozzari and F. Zingariello

The automotive industry is very interested in sheet metal forming simulation using numerical techniques such as the finite element method. A cooperative research program between…

75

Abstract

The automotive industry is very interested in sheet metal forming simulation using numerical techniques such as the finite element method. A cooperative research program between the Stamping Division of FIAT Auto and the Mechanics Department of the Politecnico di Torino was established with the aim of exploring the present possibilities of these techniques. This paper deals with the simulation of the deep forming of an axisymmetrical component, the axisymmetry being characterized by a double curvature profile, and is considered to be the first feasibility study. A sheet was modelled by fournode axisymmetric elements; the punch, the die and the blankholder were modelled by gap elements. The metal sheet was free to move along the punch and the die edges, with a continuous variation of the boundary conditions. The highly non‐linear problem requires an adequate description through the carefully considered use of the appropriate options of the MARC package (release K2). Moreover, some subroutines were written ad hoc to complete the discretization. Results are presented as strain and stress histories during the stamping process and as total forming force exerted by the punch to deform the sheet. In addition the spring‐back phase was considered in order to calculate the back deformation and the residual stress. Lastly, a comparison of the behaviour obtained with two different kinds of steel are reported.

Details

Engineering Computations, vol. 5 no. 4
Type: Research Article
ISSN: 0264-4401

Access Restricted. View access options
Article
Publication date: 27 January 2020

Ankang Liu, Bing Wang and Fei Li

This paper aims to study the effect of elevated temperature on the compression behaviour of carbon fibre polyphenylene sulphide (CF/PPS) laminates notched and unnotched specimens…

282

Abstract

Purpose

This paper aims to study the effect of elevated temperature on the compression behaviour of carbon fibre polyphenylene sulphide (CF/PPS) laminates notched and unnotched specimens made by film stacking method (FSM).

Design/methodology/approach

The surface of CF was coated with a silane coupling agent to form an effective transition layer with PPS, so as to enhance the interfacial interaction between CF and PPS. Considering the influence of fabrication pressure, forming temperature and cooling rate on the properties of laminates to obtain a reasonable preparation process. Conducting a compressive experiment of notched and unnotched specimens at different temperatures, which failure modes were examined by scanning electron microscope and stereo microscope.

Findings

The experimental observations highlight that with the increase of temperature, the transition failure mode from fibre broken to kink-band appeared in unnotched specimens, which were closely attributed to the matrix state. The notched specimens appeared more complex failure mode, which can be attributed to the joint effect of temperature and opening hole.

Research implications

A simple way of FSM for composite material laminates has been developed by using woven CF and PPS films.

Originality/value

The outcome of this study will help to understand the compression response mechanism of composite materials made by FSM at different temperature.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1467

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 2 May 2017

Andrej Škrlec and Jernej Klemenc

In conditions where a product is subjected to extreme mechanical loading in a very short time, a strain rate has a significant influence on the behaviour of the product’s…

391

Abstract

Purpose

In conditions where a product is subjected to extreme mechanical loading in a very short time, a strain rate has a significant influence on the behaviour of the product’s material. To accurately simulate the behaviour of the material during these loading conditions, the strain rate parameters of the selected material model should be appropriately used. This paper aims to present a fast method with which the proper strain-rate-dependent parameter values of the selected material model can be easily determined.

Design/methodology/approach

In the paper, an experiment was designed to study the behaviour of thin, flat, metal sheets during an impact. The results from this experiment were the basis for the determination of the strain-rate-dependent parameter values of the CowperSymonds material model. Optimisation processes with different numbers of required parameters of the selected material model were performed. The optimisation process consists of the method for design of experiment, modelling a response surface and a genetic algorithm.

Findings

The paper provides comparison of two optimisation processes with different methods for design of experiment. The performances of the presented method are compared and the engineering applicability of the results is discussed.

Originality/value

This paper presents a new fast approach for the identification of the parameter values of the CowperSymonds material model, if these cannot be easily determined directly from experimental data.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Available. Open Access. Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

1118

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 12 June 2017

Fabienne Touchard, Michel Boustie, Laurence Chocinski-Arnault, Pedro Pascual González, Laurent Berthe, Davi de Vasconcellos, Luigi Sorrentino, Pawel Malinowski and Wieslaw Ostachowicz

The purpose of this paper is to study the damage induced in “green” and synthetic composites under impact loading.

137

Abstract

Purpose

The purpose of this paper is to study the damage induced in “green” and synthetic composites under impact loading.

Design/methodology/approach

The study was focussed on epoxy-based composites reinforced with woven hemp or glass fibres. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, x-ray micro-tomography and microscopic observations.

Findings

Different damage detection thresholds for each material and technique were obtained. Damage induced by mechanical and laser impacts showed relevant differences, but the damage mechanisms are similar in both types of impact: matrix cracks, fibre failure, debonding at the fibres/matrix interface and delamination. Damage shape on back surfaces is similar after mechanical or laser impacts, but differences were detected inside samples.

Originality/value

The combination of these six diagnoses provides complementary information on the damage induced by mechanical or laser impacts in the studied green and synthetic composites.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 29 July 2022

Ashish R. Prajapati, Harshit K. Dave and Harit K. Raval

The fiber reinforced polymer composites are becoming more critical because of their exceptional mechanical properties and lightweight structures. Fused filament fabrication (FFF…

319

Abstract

Purpose

The fiber reinforced polymer composites are becoming more critical because of their exceptional mechanical properties and lightweight structures. Fused filament fabrication (FFF) is a three-dimensional (3D) printing technique that can manufacture composite structures. However, the effect of impact performance on the structural integrity of FFF made composites compared to the pre-preg composites is a primary concern for the practical usage of 3D printed parts. Therefore, this paper aims to investigate the effect of different processing parameters on the impact performance of 3D printed composites.

Design/methodology/approach

This paper investigates the impact of build orientation, fiber stacking sequence and fiber angle on the impact properties. Two build orientations, three fiber stacking sequences and two different fiber angles have been selected for this study. Charpy impact testing is carried out to investigate the impact energy absorption of the parts. Onyx as a matrix material and two different types of fibers, that is, fiberglass and high strength high temperature (HSHT) fiberglass as reinforcements, are used for the fabrication.

Findings

Results indicate that build orientation and fiber angle largely affect the impact performance of composite parts. The composite part built with XYZ orientation, 0º/90º fiber angle and B type fiber stacking sequence resulted into maximum impact energy. However, comparing both types of fiber reinforcement, HSHT fiberglass resulted in higher impact energy than regular fiberglass.

Originality/value

This study evaluates the damage modes during the impact testing of the 3D printed composite parts. The impact energy absorbed by the composite samples during the impact testing is measured to compare the effect of different processing conditions. The investigation of different types of fiberglass reinforced with Onyx material is very limited for the FFF-based process. The results also provide a database to select the different parameters to obtain the required impact properties.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 4 August 2021

Shailendra Singh Chauhan, Vaibhav Singh, Gauranshu Saini, Nitin Kaushik, Vishal Pandey and Anuj Chaudhary

The growing environmental awareness all through the world has motivated a standard change toward planning and designing better materials having good performance, which are very…

209

Abstract

Purpose

The growing environmental awareness all through the world has motivated a standard change toward planning and designing better materials having good performance, which are very much suited to the environmental factors. The purpose of this study is to investigate the impact on mechanical, thermal and water absorption properties of sawdust-based composites reinforced by epoxy, and the amount of sawdust in each form.

Design/methodology/approach

Manufacturing of the sawdust reinforced epoxy composites is the main area of the research for promoting the green composite by having good mechanical properties, biodegradability or many applications. Throughout this research work, the authors emphasize the importance of explaining the methodology for the evaluation of the mechanical and water absorption properties of the sawdust reinforced epoxy composites used by researchers.

Findings

In this paper, a comprehensive review of the mechanical properties of sawdust reinforced epoxy composite is presented. This study is reported about the use of different Wt.% of sawdust composites prepared by different processes and their mechanical, thermal and water absorption properties. It is studied that after optimum filler percentage, mechanical, thermal properties gradually decrease, but water absorption property increases with Wt.% of sawdust. The changes in the microstructure are studied by using scanning electron microscopy.

Originality/value

The novelty of this study lies in its use of a systematic approach that offers a perspective on choosing suitable processing parameters for the fabrication of composite materials for persons from both industry and academia. A study of sawdust reinforced epoxy composites guides new researchers in the fabrication and characterization of the materials.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 1 October 2018

Fahad Almaskari and Farrukh Hafeez

The purpose of this paper is to study the behaviour of glass reinforced epoxy tubes subjected to repeated indentation loads at two non-coincident indentations 180° apart.

98

Abstract

Purpose

The purpose of this paper is to study the behaviour of glass reinforced epoxy tubes subjected to repeated indentation loads at two non-coincident indentations 180° apart.

Design/methodology/approach

Four geometrically scaled specimens ranging from 100 to 400 mm diameter were used in repeated indentation tests. Force, displacement and damage growth were recorded for loading and unloading until the indenter returned to its original starting point.

Findings

Similar scaled trends were observed between the non-coincidental loadings. Unlike reported response form coincidental loadings, the responses from non-coincidental loadings yield lower values for bending stiffness and peak load.

Research limitations/implications

The differences in behaviour of the specimen between non-coincident loadings were attributed to reductions in fracture toughness and circumferential modulus.

Practical implications

Distant non-interacting damage and delamination around the circumference does reduce the structural performance.

Originality/value

Behaviour of composite tubes under different loading conditions, for example low speed impact or quasi static indentation, is widely studied, however little attention has been given to the repeated loading incidents.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 12 December 2018

Siddharth Kulkarni, David John Edwards, Craig Chapman, M. Reza Hosseini and De-Graft Owusu-Manu

Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance…

183

Abstract

Purpose

Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance passenger safety and comfort. This paper aims to present a preliminary mechanical design evaluation of the Wikispeed Car (with a focus on body bending, body torsion and body crash) to assess light-weighting implications and improve the vehicle’s environmental performance without compromising safety.

Design/methodology/approach

For this research, finite element analysis (FEA) was performed to examine the Wikispeed chassis for light-weighting opportunities in three key aspects of the vehicle’s design, namely, for body bending the rockers (or longitudinal tubes), for body torsion (again on the rockers but also the chassis as a whole) and for crash safety – on the frontal crash structure. A two-phase approach was adopted, namely, in phase one, a 3D CAD geometry was generated and in phase, two FEA was generated. The combination of analysis results was used to develop the virtual model using FEA tools, and the model was updated based on the correlation process.

Findings

The research revealed that changing the specified material Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 allows vehicle mass to be reduced by an estimated 110 kg, thus producing a concomitant 10 per cent improvement in fuel economy. The initial results imply that the current beam design made from magnesium would perform worst during a crash as the force required to buckle the beam is the lowest (between 95.2 kN and 134 kN). Steel has the largest bandwidth of force required for buckling and also requires the largest force for buckling (between 317 kN and 540 kN).

Originality/value

This is the first study of its kind to compare and contrast between material substitution and its impact upon Wikispeed car safety and performance.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 21
Per page
102050