Search results
1 – 2 of 2
This paper aims to examine the performance of the machining parameters used in the hard-turning process of DIN 1.2738 mold steel and identify the optimum machining conditions.
Abstract
Purpose
This paper aims to examine the performance of the machining parameters used in the hard-turning process of DIN 1.2738 mold steel and identify the optimum machining conditions.
Design/methodology/approach
Experiments were carried out via the Taguchi L18 orthogonal array. The evaluation of the experimental results was based on the signal/noise ratio. The effect levels of the control factors on the surface roughness and flank wear were specified with analysis of variance performed. Two different multiple regression analyses (linear and quadratic) were conducted for the experimental results. A higher correlation coefficient (R2) was obtained with the quadratic regression model, which showed values of 0.97 and 0.95 for Ra and Vb, respectively.
Findings
The experimental results indicated that generally better results were obtained with the TiAlN-coated tools, in respect to both surface roughness and flank wear. The Taguchi analysis found the optimum results for surface roughness to be with the cutting tools of coated carbide using physical vapor deposition (PVD), a cutting speed of 160 m/min and a feed rate of 0.1 mm/rev, and for flank wear, with cutting tools of coated carbide using PVD, a cutting speed of 80 m/min and a feed rate of 0.1 mm/rev. The results of calculations and confirmation tests for Ra were 0.595 and 0.570 µm, respectively, and for the Vb, 0.0244 and 0.0256 mm, respectively. Developed quadratic regression models demonstrated a very good relationship.
Originality/value
Optimal parameters for both Ra and Vb were obtained with the TiAlN-coated tool using PVD. Finally, confirmation tests were performed and showed that the optimization had been successfully implemented.
Details
Keywords
Abdulhakim Adeoye Shittu, Fuat Kara, Ahmed Aliyu and Obinna Unaeze
The purpose of this paper is to mainly review the state-of-the-art developments in the field of hydrodynamics of offshore pipelines, identifying the key tools for analysis of…
Abstract
Purpose
The purpose of this paper is to mainly review the state-of-the-art developments in the field of hydrodynamics of offshore pipelines, identifying the key tools for analysis of pipeline free spans, their applications, their qualifying characteristics and capabilities and limitations.
Design/methodology/approach
These different analytical, numerical and semi-empirical tools available for predicting such hydrodynamic loads and their effects include VIVANA, PIPESIN, VIVSIM, SIMULATOR, FATFREE, amongst others. Inherent in these models are current effects, wave effects and/ or pipe–soil interactions.
Findings
Amongst these models, the most attention was given to the new VIVANA model because this model take into account the vortex-induced effects with respect to free-spanning pipelines (which have dominant effect in the span analysis in deep water) better than other semi-empirical models (such as Shear 7). Recent improvements in VIVANA include its ability to have arbitrary variation in speed and direction of current, as well as the ability for calculation of pure IL and combined IL-CF response. Improvements in fatigue assessments at free spans, i.e. pipe–soil interaction have been achieved through the combined frequency domain and non-linear time domain analysis methodology adopted. Semi-empirical models are still the de facto currently used in the design of free-spanning pipelines. However, there is need for further research on free-span hydrodynamic coefficients and on how in-line and cross-flow vibrations interact. Again, there is still the challenge due to VIV complexity in fully understanding the fluid structure interaction problem, as there is no consolidated procedure for its analysis. It has been observed that there is large scatter between the different codes adopted in the prediction of fatigue damage, as there lacks full-scale test data devoted to determination/validation of the coefficients used in the semi-empirical models. A case study of the preliminary design of a typical 48 in. pipeline has been presented in this study to demonstrate the use of the free-span analysis tool, DNV RP F105. Excel spreadsheet has been applied in the execution of formulas.
Originality/value
This review paper is the first of its kind to study the state-of-the-art development in pipeline free-span analysis models and demonstrate the use of analysis tool, DNV for MAFSL calculation. Hence, information obtained from this paper would be invaluable in assisting designers both in the industry and academia.
Details