Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 April 1990

Klaus‐Jürgen Bathe, Miguel Luiz Bucalem and Franco Brezzi

We briefly summarize the theoretical formulations of our MITC plate bending elements and then present numerical convergence results. The elements are based on Reissner‐Mindlin…

157

Abstract

We briefly summarize the theoretical formulations of our MITC plate bending elements and then present numerical convergence results. The elements are based on Reissner‐Mindlin plate theory and a mixed‐interpolation of the transverse displacement, section rotations and transverse shear strain components. We consider our 4, 9 and 16‐node quadrilateral elements and our 7 and 12‐node triangular elements. The theoretical and numerical results indicate the high reliability and effectiveness of our elements.

Details

Engineering Computations, vol. 7 no. 4
Type: Research Article
ISSN: 0264-4401

Access Restricted. View access options
Article
Publication date: 1 December 2005

Alessandro Corsini, Franco Rispoli and Andrea Santoriello

An original finite element scheme for advection‐diffusion‐reaction problems is presented. The new method, called spotted Petrov‐Galerkin (SPG), is a quadratic Petrov‐Galerkin (PG…

716

Abstract

Purpose

An original finite element scheme for advection‐diffusion‐reaction problems is presented. The new method, called spotted Petrov‐Galerkin (SPG), is a quadratic Petrov‐Galerkin (PG) formulation developed for the solution of equations where either reaction (associated to zero‐order derivatives of the unknown) and/or advection (proportional to first‐order derivatives) dominates on diffusion (associated to second‐order derivatives). The addressed issues are turbulence and advective‐reactive features in modelling turbomachinery flows.

Design/methodology/approach

The present work addresses the definition of a new PG stabilization scheme for the reactive flow limit, formulated on a quadratic finite element space of approximation. We advocate the use of a higher order stabilized formulation that guarantees the best compromise between solution stability and accuracy. The formulation is first presented for linear scalar one‐dimensional advective‐diffusive‐reactive problems and then extended to quadrangular Q2 elements.

Findings

The proposed advective‐diffusive‐reactive PG formulation improves the solution accuracy with respect to a standard streamline driven stabilization schemes, e.g. the streamline upwind or Galerkin, in that it properly accounts for the boundary layer region flow phenomena in presence of non‐equilibrium effects.

Research limitations/implications

The numerical method here proposed has been designed for second‐order quadrangular finite‐elements. In particular, the Reynolds‐Averaged Navier‐Stokes equations with a non‐linear turbulence closure have been modelled using the stable mixed element pair Q2‐Q1.

Originality/value

This paper investigated the predicting capabilities of a finite element method stabilized formulation developed for the purpose of solving advection‐reaction‐diffusion problems. The new method, called SPG, demonstrates its suitability in solving the typical equations of turbulence eddy viscosity models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1686

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 2005

Nicolas Renon, Pierre Montmitonnet and Patrick Laborde

Purpose – The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a…

820

Abstract

Purpose – The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a vast class of soil treatment tools. Design/methodology/approach – We introduced soil constitutive equation in a FE software initially designed for the metal forming. We performed the numerical integration of the non‐linear ploughing problem. Non‐linearities encountered by the problem can be summed up: as soil constitutive equation (idealized with non‐associated compressible plastic law), unilateral frictional contact conditions (with a rigid body), geometrical non‐linearities (the ploughing tool) and large deformation range. To handle such difficulties we performed several numerical methods as implicit temporal scheme, Newton‐Raphson, non‐symmetric iterative solver, as well as proper approximation on stress and strain measures. Findings – Main results deal with the validation of the integration of the non‐linear constitutive equation in the code and a parametric study of the ploughing process. The influence of tool geometric parameters on the soil deformation modes and on the force experienced on the tools had been point out. As well, the influence of soil characteristics as compressibility had been analyzed. Research limitations/implications – This research is devoted to perform a numerical model applicable for a large range of soil treatment tools and for a large class of soil. However, taking into account all kind of soil is utopist. So limitations met are essentially related to the limit of the accuracy of the elasto‐plastic idealization for the soil. Practical implications – In practice the numerical model exposed in the paper can clearly help to improve and optimize any process involving superficial soil submitted to the mechanical action of a rigid body. Originality/value – The original value of the paper is to provide a global and an applicable numerical model able to take into account the main topics related to the ploughing of superficial soils. Industrials in geotechnics, in agriculture or in military purposes can benefit in using such numerical model.

Details

Engineering Computations, vol. 22 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3561

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5
Per page
102050