Abel Yeboah-Ofori, Cameron Swart, Francisca Afua Opoku-Boateng and Shareeful Islam
Cyber resilience in cyber supply chain (CSC) systems security has become inevitable as attacks, risks and vulnerabilities increase in real-time critical infrastructure systems…
Abstract
Purpose
Cyber resilience in cyber supply chain (CSC) systems security has become inevitable as attacks, risks and vulnerabilities increase in real-time critical infrastructure systems with little time for system failures. Cyber resilience approaches ensure the ability of a supply chain system to prepare, absorb, recover and adapt to adverse effects in the complex CPS environment. However, threats within the CSC context can pose a severe disruption to the overall business continuity. The paper aims to use machine learning (ML) techniques to predict threats on cyber supply chain systems, improve cyber resilience that focuses on critical assets and reduce the attack surface.
Design/methodology/approach
The approach follows two main cyber resilience design principles that focus on common critical assets and reduce the attack surface for this purpose. ML techniques are applied to various classification algorithms to learn a dataset for performance accuracies and threats predictions based on the CSC resilience design principles. The critical assets include Cyber Digital, Cyber Physical and physical elements. We consider Logistic Regression, Decision Tree, Naïve Bayes and Random Forest classification algorithms in a Majority Voting to predicate the results. Finally, we mapped the threats with known attacks for inferences to improve resilience on the critical assets.
Findings
The paper contributes to CSC system resilience based on the understanding and prediction of the threats. The result shows a 70% performance accuracy for the threat prediction with cyber resilience design principles that focus on critical assets and controls and reduce the threat.
Research limitations/implications
Therefore, there is a need to understand and predicate the threat so that appropriate control actions can ensure system resilience. However, due to the invincibility and dynamic nature of cyber attacks, there are limited controls and attributions. This poses serious implications for cyber supply chain systems and its cascading impacts.
Practical implications
ML techniques are used on a dataset to analyse and predict the threats based on the CSC resilience design principles.
Social implications
There are no social implications rather it has serious implications for organizations and third-party vendors.
Originality/value
The originality of the paper lies in the fact that cyber resilience design principles that focus on common critical assets are used including Cyber Digital, Cyber Physical and physical elements to determine the attack surface. ML techniques are applied to various classification algorithms to learn a dataset for performance accuracies and threats predictions based on the CSC resilience design principles to reduce the attack surface for this purpose.
Details
Keywords
Abel Yeboah-Ofori and Francisca Afua Opoku-Boateng
Various organizational landscapes have evolved to improve their business processes, increase production speed and reduce the cost of distribution and have integrated their…
Abstract
Purpose
Various organizational landscapes have evolved to improve their business processes, increase production speed and reduce the cost of distribution and have integrated their Internet with small and medium scale enterprises (SMEs) and third-party vendors to improve business growth and increase global market share, including changing organizational requirements and business process collaborations. Benefits include a reduction in the cost of production, online services, online payments, product distribution channels and delivery in a supply chain environment. However, the integration has led to an exponential increase in cybercrimes, with adversaries using various attack methods to penetrate and exploit the organizational network. Thus, identifying the attack vectors in the event of cyberattacks is very important in mitigating cybercrimes effectively and has become inevitable. However, the invincibility nature of cybercrimes makes it challenging to detect and predict the threat probabilities and the cascading impact in an evolving organization landscape leading to malware, ransomware, data theft and denial of service attacks, among others. The paper explores the cybercrime threat landscape, considers the impact of the attacks and identifies mitigating circumstances to improve security controls in an evolving organizational landscape.
Design/methodology/approach
The approach follows two main cybercrime framework design principles that focus on existing attack detection phases and proposes a cybercrime mitigation framework (CCMF) that uses detect, assess, analyze, evaluate and respond phases and subphases to reduce the attack surface. The methods and implementation processes were derived by identifying an organizational goal, attack vectors, threat landscape, identification of attacks and models and validation of framework standards to improve security. The novelty contribution of this paper is threefold: first, the authors explore the existing threat landscapes, various cybercrimes, models and the methods that adversaries are deploying on organizations. Second, the authors propose a threat model required for mitigating the risk factors. Finally, the authors recommend control mechanisms in line with security standards to improve security.
Findings
The results show that cybercrimes can be mitigated using a CCMF to detect, assess, analyze, evaluate and respond to cybercrimes to improve security in an evolving organizational threat landscape.
Research limitations/implications
The paper does not consider the organizational size between large organizations and SMEs. The challenges facing the evolving organizational threat landscape include vulnerabilities brought about by the integrations of various network nodes. Factor influencing these vulnerabilities includes inadequate threat intelligence gathering, a lack of third-party auditing and inadequate control mechanisms leading to various manipulations, exploitations, exfiltration and obfuscations.
Practical implications
Attack methods are applied to a case study for the implementation to evaluate the model based on the design principles. Inadequate cyber threat intelligence (CTI) gathering, inadequate attack modeling and security misconfigurations are some of the key factors leading to practical implications in mitigating cybercrimes.
Social implications
There are no social implications; however, cybercrimes have severe consequences for organizations and third-party vendors that integrate their network systems, leading to legal and reputational damage.
Originality/value
The paper’s originality considers mitigating cybercrimes in an evolving organization landscape that requires strategic, tactical and operational management imperative using the proposed framework phases, including detect, assess, analyze, evaluate and respond phases and subphases to reduce the attack surface, which is currently inadequate.