Hengky Eng, Saeed Maleksaeedi, Suzhu Yu, Yu Ying Clarrisa Choong, Florencia Edith Wiria, Ruihua Eugene Kheng, Jun Wei, Pei-Chen Su and Huijun Phoebe Tham
Polymeric parts produced by 3D stereolithography (SL) process have poorer mechanical properties as compared to their counterparts fabricated via conventional methods, such as…
Abstract
Purpose
Polymeric parts produced by 3D stereolithography (SL) process have poorer mechanical properties as compared to their counterparts fabricated via conventional methods, such as injection or compression molding. Adding nanofillers in the photopolymer resin for SL could help improve mechanical properties. This study aims to achieve enhancement in mechanical properties of parts fabricated by SL, for functional applications, by using well-dispersed nanofillers in the photopolymers, together with suitable post-processing.
Design/methodology/approach
Carbon nanotubes (CNTs) have high strength and Young’s modulus, making them attractive nanofillers. However, dispersion of CNTs in photopolymer is a critical challenge, as they tend to agglomerate easily. Achieving good dispersion is crucial to improve the mechanical properties; thus, suitable dispersion mechanisms and processes are examined. Solvent exchange process was found to improve the dispersion of multiwalled carbon nanotubes in the photopolymer. The UV-absorbing nature of CNTs was also discovered to affect the curing properties. With suitable post processing, coupled with thermal curing, the mechanical properties of SL parts made from CNTs-filled resin improved significantly.
Findings
With the addition of 0.25 wt.% CNTs into the photopolymer, tensile stress and elongation of the 3D printed parts increased by 70 and 46 per cent, respectively. With the significant improvement, the achieved tensile strength is comparable to parts manufactured by conventional methods.
Practical implications
This allows functional parts to be manufactured using SL.
Originality/value
In this paper, an improved procedure to incorporate CNTs into the photopolymer was developed. Furthermore, because of strong UV-absorption nature of CNTs, curing properties of photopolymer and SL parts with and without CNT fillers were studied. Optimized curing parameters were determined and additional post-processing step for thermal curing was discovered as an essential step in order to further enhance the mechanical properties of SL composite parts.
Details
Keywords
Swee Leong Sing, Wai Yee Yeong, Florencia Edith Wiria, Bee Yen Tay, Ziqiang Zhao, Lin Zhao, Zhiling Tian and Shoufeng Yang
This paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser…
Abstract
Purpose
This paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser beam without the use of binders.
Design/methodology/approach
Selective laser sintering or melting (SLS/SLM) techniques are first introduced, followed by analysis of results from silica (SiO2), zirconia (ZrO2) and ceramic-reinforced metal matrix composites processed by direct laser sintering and melting.
Findings
At the current state of technology, it is still a challenge to fabricate dense ceramic components directly using SLS/SLM. Critical challenges encountered during direct laser melting of ceramic will be discussed, including deposition of ceramic powder layer, interaction between laser and powder particles, dynamic melting and consolidation mechanism of the process and the presence of residual stresses in ceramics processed via SLS/SLM.
Originality/value
Despite the challenges, SLS/SLM still has the potential in fabrication of ceramics. Additional research is needed to understand and establish the optimal interaction between the laser beam and ceramic powder bed for full density part fabrication. Looking into the future, other melting-based techniques for ceramic and composites are presented, along with their potential applications.
Details
Keywords
Florencia Edith Wiria, Novella Sudarmadji, Kah Fai Leong, Chee Kai Chua, E. Wei Chng and Chian Chai Chan
In recent years, selective laser sintering (SLS) has been used in the biomedical field, including building small‐scaled biomedical devices such as tissue engineering scaffolds and…
Abstract
Purpose
In recent years, selective laser sintering (SLS) has been used in the biomedical field, including building small‐scaled biomedical devices such as tissue engineering scaffolds and drug delivery devices. A compact adaptation system for the SLS is needed to obtain a more effective and efficient way of sintering small‐scale prototypes so as to reduce powder wastage. Limitations of available smaller‐scale adaptation devices include the need of additional electrical supplies for the device. The purpose of this paper is to report the development of such a system to be mounted at the SLS part bed without any additional energy supply.
Design/methodology/approach
The compact adaptation device works on the concept of transferring the motion of the SLS part bed onto the part bed of the compact adaptation device. The device is an integrated attachment that is fixed onto the building platform of the SLS. The gear system of the device lifts the powder supply bed at both sides of the device simultaneously when the part bed at the center of the device is lowered. To further increase powder saving, an improved powder delivery system named alternative supply mechanism (ASM) is mounted on top of the roller to be coupled together with the compact adaptation device.
Findings
Powder saving up to 6.5 times compared to using full build version of the Sinterstation 2500 has been achieved by using the compact adaptation device. Furthermore, powder wastage has been reduced by 84 percent when using the ASM compared to the compact adaptation device alone.
Originality/value
The paper demonstrates the development and viability of adaptation devices for SLS to significantly reduce powder consumption by using solely mechanical means to build small parts without using external power supply.
Details
Keywords
Florencia Edith Wiria, Kah Fai Leong and Chee Kai Chua
Tissue engineering (TE) involves biological, medical and engineering expertise and a current engineering challenge is to provide good TE scaffolds. These highly porous 3D…
Abstract
Purpose
Tissue engineering (TE) involves biological, medical and engineering expertise and a current engineering challenge is to provide good TE scaffolds. These highly porous 3D scaffolds primarily serve as temporal holding devices for cells that facilitate structural and functional tissue unit formation of the newly transplanted cells. One method used successfully to produce scaffolds is that of rapid prototyping. Selective laser sintering (SLS) is one such versatile method that is able to process many types of polymeric materials and good stability of its products. The purpose of this paper is to present modeling of the heat transfer process, to understand the sintering phenomena that are experienced by powder particles in the SLS powder bed during the sintering process. With the understanding of sintering process obtained through the theoretical modeling, experimental process of biomaterials in SLS could be directed towards the appropriate sintering window, so as not to cause unintentional degradation to the biomaterials.
Design/methodology/approach
SLS uses a laser as a heat source to sinter parts. A theoretical study based on heat transfer phenomena during SLS process was carried out. The study identified the significant biomaterial and laser beam properties that were critical to the sintering result. The material properties were thermal conductivity, thermal diffusivity, surface reflectivity and absorption coefficient.
Findings
The influential laser beam properties were laser power and scan speed, which were machine parameters that can be controlled by users. The identification of the important parameters has ensured that favorable sintering conditions can be achieved.
Research limitations/implications
The selection of biopolymer influences the manner in which energy is absorbed by the powder bed during the SLS process. In this paper, the modeling and investigative work was validated by poly(vinyl alcohol) which is a biomaterial that has been used for many biomedical and pharmaceutical purposes.
Practical implications
The paper can be the foundation for extension to other types of biomaterials including biopolymers, bioceramics and biocomposites.
Originality/value
The formulation of the theory for heat transfer phenomena during the SLS process is of significant value to any studies in using SLS for biomedical applications.