Search results

1 – 2 of 2
Article
Publication date: 30 November 2021

Bence Tipary and Ferenc Gábor Erdős

The purpose of this paper is to propose a novel measurement technique and a modelless calibration method for improving the positioning accuracy of a three-axis parallel kinematic…

Abstract

Purpose

The purpose of this paper is to propose a novel measurement technique and a modelless calibration method for improving the positioning accuracy of a three-axis parallel kinematic machine (PKM). The aim is to present a low-cost calibration alternative, for small and medium-sized enterprises, as well as educational and research teams, with no expensive measuring devices at their disposal.

Design/methodology/approach

Using a chessboard pattern on a ground-truth plane, a digital indicator, a two-dimensional eye-in-hand camera and a laser pointer, positioning errors are explored in the machine workspace. With the help of these measurements, interpolation functions are set up per direction, resulting in an interpolation vector function to compensate the volumetric errors in the workspace.

Findings

Based on the proof-of-concept system for the linear-delta PKM, it is shown that using the proposed measurement technique and modelless calibration method, positioning accuracy is significantly improved using simple setups.

Originality/value

In the proposed method, a combination of low-cost devices is applied to improve the three-dimensional positioning accuracy of a PKM. By using the presented tools, the parametric kinematic model is not required; furthermore, the calibration setup is simple, there is no need for hand–eye calibration and special fixturing in the machine workspace.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 September 2021

Bence Tipary, András Kovács and Ferenc Gábor Erdős

The purpose of this paper is to give a comprehensive solution method for the manipulation of parts with complex geometries arriving in bulk into a robotic assembly cell. As…

Abstract

Purpose

The purpose of this paper is to give a comprehensive solution method for the manipulation of parts with complex geometries arriving in bulk into a robotic assembly cell. As bin-picking applications are still not reliable in intricate workcells, first, the problem is transformed to a semi-structured pick-and-place application, then by collecting and organizing the required process planning steps, a methodology is formed to achieve reliable factory applications even in crowded assembly cell environments.

Design/methodology/approach

The process planning steps are separated into offline precomputation and online planning. The offline phase focuses on preparing the operation and reducing the online computational burdens. During the online phase, the parts laying in a semi-structured arrangement are first recognized and localized based on their stable equilibrium using two-dimensional vision. Then, the picking sequence and corresponding collision-free robot trajectories are planned and optimized.

Findings

The proposed method was evaluated in a geometrically complex experimental workcell, where it ensured precise, collision-free operation. Moreover, the applied planning processes could significantly reduce the execution time compared to heuristic approaches.

Research limitations/implications

The methodology can be further generalized by considering multiple part types and grasping modes. Additionally, the automation of grasp planning and the enhancement of part localization, sequence planning and path smoothing with more advanced solutions are further research directions.

Originality/value

The paper proposes a novel methodology that combines geometrical computations, image processing and combinatorial optimization, adapted to the requirements of flexible pick-and-place applications. The methodology covers each required planning step to reach reliable and more efficient operation.

1 – 2 of 2