Search results

1 – 10 of 11
Article
Publication date: 1 September 2022

Kang Min, Fenglei Ni, Guojun Zhang, Xin Shu and Hong Liu

The purpose of this paper is to propose a smooth double-spline interpolation method for six-degree-of-freedom rotational robot manipulators, achieving the global C2 continuity of…

Abstract

Purpose

The purpose of this paper is to propose a smooth double-spline interpolation method for six-degree-of-freedom rotational robot manipulators, achieving the global C2 continuity of the robot trajectory.

Design/methodology/approach

This paper presents a smooth double-spline interpolation method, achieving the global C2 continuity of the robot trajectory. The tool center positions and quaternion orientations are first fitted by a cubic B-spline curve and a quartic-polynomial-based quaternion spline curve, respectively. Then, a parameter synchronization model is proposed to realize the synchronous and smooth movement of the robot along the double spline curves. Finally, an extra u-s function is used to record the relationship between the B-spline parameter and its arc length parameter, which may reduce the feed rate fluctuation in interpolation. The seven segments jerk-limited feed rate profile is used to generate motion commands for algorithm validation.

Findings

The simulation and experimental results demonstrate that the proposed method is effective and can generate the global C2-continuity robot trajectory.

Originality/value

The main contributions of this paper are as follows: guarantee the C2 continuity of the position path and quaternion orientation path simultaneously; provide a parameter synchronization model to realize the synchronous and smooth movement of the robot along the double spline curves; and add an extra u-s function to realize arc length parameterization of the B-spline path, which may reduce the feed rate fluctuation in interpolation.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 October 2024

Zhaoyang Chen, Kang Min, Xinyang Fan, Baoxu Tu, Fenglei Ni and Hong Liu

This paper aims to propose a real-time evolutionary multi-objective semi-analytical inverse kinematics (IK) algorithm (EMSA-IK) for solving the multi-objective IK of redundant…

Abstract

Purpose

This paper aims to propose a real-time evolutionary multi-objective semi-analytical inverse kinematics (IK) algorithm (EMSA-IK) for solving the multi-objective IK of redundant manipulators.

Design/methodology/approach

Within EMSA-IK, the parameterization method is applied to reduce the number of optimization variables of the evolutionary algorithm and calculate semi-analytical solutions that meet high target pose accuracy. The original evolutionary algorithm is improved with the proposed adaptive search sub-space strategy so that the improved evolutionary algorithm can be used to efficiently perform global search within the parametric joint space to obtain the global optimal parametric joint angles that satisfy multi-objective constraints.

Findings

Ablation experiments show the effectiveness of the improved strategy used for evolutionary algorithms. Comparative experiments on different manipulators demonstrate the advantages of EMSA-IK in terms of generalizability and balancing multiple objectives, for example, motion continuity, joint limits and obstacle avoidance. Real-world experiments further validate the effectiveness of the proposed algorithm for real-time application.

Originality/value

The semi-analytical IK solution that simultaneously satisfies high target pose accuracy and multi-objective constraints can be obtained in real time. Compared to existing semi-analytical IK algorithms, the proposed algorithm achieves obstacle avoidance for the first time. The proposed algorithm demonstrates superior generalizability, applicable to not only redundant manipulators with revolute joints but also those with prismatic joints.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 August 2024

Baoxu Tu, Yuanfei Zhang, Wangyang Li, Fenglei Ni and Minghe Jin

The aim of this paper is to enhance the control performance of dexterous hands, enabling them to handle the high data flow from multiple sensors and to meet the deployment…

Abstract

Purpose

The aim of this paper is to enhance the control performance of dexterous hands, enabling them to handle the high data flow from multiple sensors and to meet the deployment requirements of deep learning methods on dexterous hands.

Design/methodology/approach

A distributed control architecture was designed, comprising embedded motion control subsystems and a host control subsystem built on ROS. The design of embedded controller state machines and clock synchronization algorithms ensured the stable operation of the entire distributed control system.

Findings

Experiments demonstrate that the entire system can operate stably at 1KHz. Additionally, the host can accomplish learning-based estimates of contact position and force.

Originality/value

This distributed architecture provides foundational support for the large-scale application of machine learning algorithms on dexterous hands. Dexterity hands utilizing this architecture can be easily integrated with robotic arms.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 April 2023

Xinyang Fan, Xin Shu, Baoxu Tu, Changyuan Liu, Fenglei Ni and Zainan Jiang

In the current teleoperation system of humanoid robots, the control between arms and the control between the waist and arms are individual and lack coordinated motion. This paper…

Abstract

Purpose

In the current teleoperation system of humanoid robots, the control between arms and the control between the waist and arms are individual and lack coordinated motion. This paper aims to solve the above problem and proposes a teleoperation control approach for a humanoid robot based on waist–arm coordination (WAC).

Design/methodology/approach

The teleoperation approach based on WAC comprises dual-arm coordination (DAC) and WAC. The DAC method realizes the coordinated motion of both arms through one hand by establishing a mapping relationship between a single hand controller and the manipulated object; the WAC method realizes the coordinated motion of both arms and waist by calculating the inverse kinematic input of robotic arms based on the desired velocity of the waist and the end of both arms. An integrated teleoperation control framework provides interfaces for the above methods, and users can switch control modes online to adapt to different tasks.

Findings

After conducting experiments on the dual-arm humanoid robot through the teleoperation control framework, it was found that the DAC method can save 27.2% of the operation time and reduce 99.9% of the posture change of the manipulated object compared with the commonly used individual control. The WAC method can accomplish a task that cannot be done by individual control. The experiments proved the improvement of both methods in terms of operation efficiency, operation stability and operation capability compared with individual control.

Originality/value

The DAC method better maintains the constraints of both arms and the manipulated object. The WAC method better maintains the constraints of the manipulated object itself. Meanwhile, the teleoperation framework integrates the proposed methods and enriches the teleoperation modes and control means.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 October 2018

Fenglei Ni, Tianhui Li, Yiwei Liu, Hong Liu, Yang Li, Liangliang Zhao and Zhaopeng Chen

The purpose of this paper is to study the dynamic modeling and controller design for the series element actuator (SEA) joints. The robot equipped with SEA joints is a strong…

Abstract

Purpose

The purpose of this paper is to study the dynamic modeling and controller design for the series element actuator (SEA) joints. The robot equipped with SEA joints is a strong coupling, nonlinear, highly flexible system, which can prevent itself from damaging by the accidental impact and the people to be injured by the robot.

Design/methodology/approach

Based on the torque source model, the authors built a dynamic model for the SEA joint. To improve the accuracy of this model, the authors designed an elastic element into the joint and implemented the vector control for the joint motor. A control method of combined PD controller and back-stepping was proposed. Moreover, the torque control could be transformed into position control by stiffness transformation.

Findings

The established model and the proposed method are verified by the position and torque control experiments. The experimental results show that the dynamic model of the SEA joint is accurate and the proposed control strategies for the SEA joint are reasonable and feasible.

Originality/value

The main contribution of the paper is as follows: designing an elastic element with high linearity to improve the model accuracy of the SEA joint. The control strategy-based back-stepping method for the SEA joint is proposed to increase the robustness of the controller.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 October 2024

Kang Min, Fenglei Ni, Zhaoyang Chen and Hong Liu

The purpose of the paper is to propose an efficient, simple and concise unified robot calibration method that simultaneously considers errors in hand-eye parameters, kinematic…

Abstract

Purpose

The purpose of the paper is to propose an efficient, simple and concise unified robot calibration method that simultaneously considers errors in hand-eye parameters, kinematic parameters and tool center point (TCP) position.

Design/methodology/approach

This paper proposes a unified robot calibration method. First, the initial hand-eye matrix and TCP position are computed without considering kinematic parameter errors. Second, the nominal TCP positions in the laser tracker coordinate system {S} are computed. The actual TCP positions in {S} are directly measured. Third, a unified parameter error calibration model is established, and the sequential quadratic programming algorithm is used for error identification. Finally, the identified errors are used for direct error compensation.

Findings

Simulation results prove that the proposed scheme can accurately calibrate the hand-eye parameters, kinematic parameters and TCP position simultaneously. Experimental results reveal that the maximum value of the absolute positioning errors is reduced from 5.4725 mm to 0.4095 mm (reduced by 92.52%). Thus, the proposed approach meets the accuracy requirements of most robotic applications.

Originality/value

The main contributions of this paper are: (1) this scheme is efficient. The method can achieve fully automatic calibration by incorporating Kronecker products for the initial hand-eye matrix and TCP position computation. Thereby significantly improving the calibration efficiency and liberating the labor force. (2) This scheme is simple and concise. The hand-eye parameters, kinematic parameters and TCP position errors are modeled in a unified framework. Furthermore, the related redundant parameters are deleted.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 April 2024

Baoxu Tu, Yuanfei Zhang, Kang Min, Fenglei Ni and Minghe Jin

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction…

Abstract

Purpose

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction methods: handcrafted features, convolutional features and autoencoder features. Subsequently, these features were mapped to contact locations through a contact location regression network. Finally, the network performance was evaluated using spherical fittings of three different radii to further determine the optimal feature extraction method.

Design/methodology/approach

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image.

Findings

This research indicates that data collected by probes can be used for contact localization. Introducing a batch normalization layer after the feature extraction stage significantly enhances the model’s generalization performance. Through qualitative and quantitative analyses, the authors conclude that convolutional methods can more accurately estimate contact locations.

Originality/value

The paper provides both qualitative and quantitative analyses of the performance of three contact localization methods across different datasets. To address the challenge of obtaining accurate contact locations in quantitative analysis, an indirect measurement metric is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2023

Kang Min, Fenglei Ni and Hong Liu

The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation…

Abstract

Purpose

The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation trajectory.

Design/methodology/approach

This paper presents an efficient and accurate F/T sensing method based on an excitation trajectory. First, the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity. Therefore, the sensing accuracy is improved. Then, the excitation trajectory with optimized poses is used for robot following and data acquisition. The data acquisition is not limited by poses and its time can be significantly shortened. Finally, the least squares method is used to identify parameters and sense contact forces/torques.

Findings

Experiments have been carried out on the self-developed robot manipulator. The results strongly demonstrate that the proposed approach is more efficient and accurate than the existing widely-adopted method. Furthermore, the data acquisition time can be shortened from more than 60 s to 3 s/20 s. Thus, the proposed approach is effective and suitable for fast-paced industrial applications.

Originality/value

The main contributions of this paper are as follows: the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity; and the excitation trajectory with optimized poses is used for robot following and data acquisition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 February 2018

Jun Wu, Fenglei Ni, Yuanfei Zhang, Shaowei Fan, Qi Zhang, Jiayuan Lu and Hong Liu

This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly.

Abstract

Purpose

This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly.

Design/methodology/approach

The dynamics of the manipulator is firstly presented with linear property. The controller used in connector assembly is inspired by human operation habits in similar tasks. The hybrid impedance control is adopted to apply force in the assembly direction and provide compliance in rest directions. The reference trajectory is implemented with an adaptive controller. Event-based switching strategy is conducted for a smooth transition from unconstrained to constrained space.

Findings

The method can ensure both ideal compliance behaviour with dynamic uncertainty and a smooth transition from unconstrained to constrained space. Also, the method can ensure compliant connector assembly with a good tolerance to the target estimation error.

Practical implications

The method can be applied in the connector assembly by “pushing” operation. The controller devotes efforts on force tracking and smooth transition, having potential applications in contact tasks in delicate environment.

Originality/value

As far as the authors know, the paper is original in providing a uniform controller for improving force and position control performance in both unconstrained and constrained space with dynamic uncertainty. The proposed controller can ensure a smooth transition by only adjusting parameters.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 September 2019

Yiwei Liu, Shipeng Cui, Hong Liu, Minghe Jin, Fenglei Ni, Zhiqi Li and Chongyang Li

The purpose of this study is to develop a robotic hand–arm system for on-orbit servicing missions at the Tiangong-2 (TG-2) Space Laboratory.

Abstract

Purpose

The purpose of this study is to develop a robotic hand–arm system for on-orbit servicing missions at the Tiangong-2 (TG-2) Space Laboratory.

Design/methodology/approach

The hand–arm system is mainly composed of a lightweight arm, a dexterous hand, an electrical cabinet, a global camera, a hand–eye camera and some human–machine interfaces. The 6-DOF lightweight arm and the 15-DOF dexterous hand adopt the modular design philosophy that greatly reduces the design cycle and cost. To reduce the computational burden on the central controller and simplify system maintenance, an electrical system which has a hierarchical structure is introduced.

Findings

The prototypical operating experiments completed in TG-2 space laboratory demonstrate the performance of the hand–arm system and lay foundations for the future applications of space manipulators.

Originality/value

The main contributions of this paper are as follows a robotic hand–arm system which can perform on-orbit servicing missions such as grasping the electric drill, screwing the bolt, unscrewing J599 electrical connector has been developed; a variable time step motion plan method is proposed to adjust the trajectories of the lightweight arm to reduce or eliminate the collision force; and a dexterous hand uses the coordinated grasp control based on the object Cartesian stiffness to realize stable grasp. To solve the kinematic mapping from the cyber glove commands to the dexterous hand, a fingertip-position-based method is proposed to acquire precise solutions.

1 – 10 of 11