Jia Xu, Jing Yu Zhang, Jiahan Xu, Yuqi Chang, Feilong Shi, Zhanzhu Zhang and Huanxia Zhang
One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl…
Abstract
Purpose
One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to the cotton to obtain the flame-retardant, water-repellent, ultraviolet-resistant and conductive multifunctional fabric.
Design/methodology/approach
The modified CNTs were loaded onto cotton fabric by impregnation and drying. The CNTs-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to the cotton by dipping-drying method. The surface chemistry of functionalized CNTs was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA analysis. Surface hydrophilicity and hydrophobicity of fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the UPF value.
Findings
Dimethyl phosphite and perfluorohexyl chain were grafted on the surface of CNTs successively. The quantity of each component on the surface of CNTs was calculated according to XPS results. According to miniature combustion calorimeter data, both the value of maximum heat release rate (PHRR) and total heat release (THR) of CNTs -multi/cotton was about 65% lower than that of untreated cotton fabric. The residue after combustion of CNTs -multi/ cotton in the match test was more compact. The electrical conductivity of multi/ cotton is 225.6 kΩ/□, which is better than that of untreated cotton fabric. The UPF value of CNTs-multi/cotton reached 121, which was indicated that the anti-ultraviolet performance of CNTs-multi was greatly improved.
Research limitations/implications
Modifying method to increase the functional component amuount on the CNTs surface still need to be explored, which could increase the hydrophobicity. How to further improve the functional effect and the general synthetic steps will be of great significance to the preparation of multifunctional modified cotton fabric.
Practical implications
This modifying method can be used in any of multifunctional textile preparation process. The UV-resistant and flame retardant cotton fabric was revealed as a sample for use in outdoor sports such as clothes and tents.
Originality/value
To meet the needs of multifunctional cotton fabric, the modification of CNTs with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant conductive and conductive properties.
Details
Keywords
Feilong Shi, Jia Xu and Zhanzhu Zhang
This study aims to prepare UV protection and hydrophobic fabric through modifying cotton fabric by graphene oxide and silane coupling agent. The graphene oxide and silane coupling…
Abstract
Purpose
This study aims to prepare UV protection and hydrophobic fabric through modifying cotton fabric by graphene oxide and silane coupling agent. The graphene oxide and silane coupling agent (KH570) are anchored on the cotton fabric by a stable chemical bond.
Design/methodology/approach
Graphene oxide was prepared by modified Hummers method. The fabric sample was treated with graphene oxide and silane coupling agent KH570 using simple dipping-padding-drying method. The effects of the dosage of graphene oxide, silane coupling agent KH570 and curing temperature were determined by single variable experiment and orthogonal experiment, The UVA and UVB transmittances in ultraviolet light of the sample fabric were characterized, and the contact angle test method with water was used to indicate the hydrophobicity of the sample fabric. The structure and surface of the fabric were analyzed using Fourier-transform infrared spectroscopy and scanning electron microscopy.
Findings
The cotton fabric was successfully modified by graphene oxide and silane coupling agent KH570. Compared with the untreated fabric, the surface of the fabric was smooth, and there was no gap on the fiber. The graphene oxide, silane coupling agent KH570 and cotton fabric combined tightly. The UPF value of the modified fabric was 50+, and the contact angle reached 138.1°. It had excellent UV protection and hydrophobic properties.
Research limitations/implications
Although graphene oxide and silane coupling agents KH570 had successfully endowed the cotton fabric with good UV protection and hydrophobic properties, graphene oxide and silane coupling agent KH570 are expensive and used in large quantities. There are certain limitations in the actual life and production process.
Practical implications
After treating with silane coupling agent, the hydrophilic fabric treated with graphene oxide is being translated into hydrophobic, and graphene oxide bonded with cotton. The modified fabrics also have excellent UV protection. This fabric can be used for outdoor sports such as clothes and tents.
Originality/value
Cotton fabric treated with graphene oxide generally by simple dip-dry-cure method is hydrophilic and graphene oxide is easy to drop. The usage of silane coupling agent KH570 as a crosslinking agent to link graphene oxide and cotton fibers has not been reported yet. The modified fabrics have both UV protection and hydrophobic properties.
Details
Keywords
Jianhua Sun, Suihuai Yu, Jianjie Chu, Wenzhe Cun, Hanyu Wang, Chen Chen, Feilong Li and Yuexin Huang
In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine…
Abstract
Purpose
In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.
Design/methodology/approach
The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.
Findings
The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.
Originality/value
The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.