Fatemeh Andami, Maryam Ataeefard, Farhood Najafi and Mohammad Reza Saeb
Printing toners are polymer composites accountable for transmission of digital images onto target substrates. Bearing in mind the ever increasing demand for high quality digital…
Abstract
Purpose
Printing toners are polymer composites accountable for transmission of digital images onto target substrates. Bearing in mind the ever increasing demand for high quality digital printing, modification and/or integration of existing techniques for manufacturing toners with favourable morphological and colour characteristics appears of vital importance. The present study aims to uncover the significance of in-situ polymerisation method, i.e. suspension, emulsion and mini-emulsion to control the microstructure of toner particles (particle size, particle size distribution and sphereness) while keeping the energy required for polymerisation along with reaction conversion at a reasonable level.
Design/methodology/approach
Assessment of particle size, particle size distribution and reaction conversion visualised the potential of suspension, emulsion and mini-emulsion polymerisation techniques to control microstructure, and colour characteristics of synthesized toners as well.
Findings
The results provided support for the fact that either the emulsion or mini-emulsion polymerisation routes will result in toners having an acceptable particle size and particle size distribution in the presence of a redox precursor. The higher monomer conversion at low temperature, as compared to the suspension polymerisation, was noticeable.
Practical implications
Analysing the glass transition temperature and colour characteristics of the resulting toners elucidated the superiority of mini-emulsion with respect to the other two cases which ranks this method on account of application.
Originality/value
For the first time, mini-emulsion route was put into practice and toners with acceptable colour and microstructure features were synthesised. In spite of lower polymerisation temperature and higher conversion of mini-emulsion compared to suspension and emulsion polymerisation techniques, further investigations are required to fine-tuning the properties of toners produced through this method.
Details
Keywords
Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard
Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…
Abstract
Purpose
Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.
Design/methodology/approach
Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.
Findings
The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.
Originality/value
To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.