Search results
1 – 3 of 3Farita Tasnim, Atieh Sadraei, Bianca Datta, Mina Khan, Kyung Yun Choi, Atharva Sahasrabudhe, Tomás Alfonso Vega Gálvez, Irmandy Wicaksono, Oscar Rosello, Carlos Nunez-Lopez and Canan Dagdeviren
When wearable and implantable devices first arose in the 1970s, they were rigid and clashed dramatically with our soft, pliable skin and organs. The past two decades have…
Abstract
Purpose
When wearable and implantable devices first arose in the 1970s, they were rigid and clashed dramatically with our soft, pliable skin and organs. The past two decades have witnessed a major upheaval in these devices. Traditional electronics are six orders of magnitude stiffer than soft tissue. As a result, when rigid electronics are integrated with the human body, severe challenges in both mechanical and geometrical form mismatch occur. This mismatch creates an uneven contact at the interface of soft-tissue, leading to noisy and unreliable data gathering of the body’s vital signs. This paper aims to predict the role that discreet, seamless medical devices will play in personalized health care by discussing novel solutions for alleviating this interface mismatch and exploring the challenges in developing and commercializing such devices.
Design methodology/approach
Since the form factors of biology cannot be changed to match those of rigid devices, conformable devices that mimic the shape and mechanical properties of soft body tissue must be designed and fabricated. These conformable devices play the role of imperceptible medical interfaces. Such interfaces can help scientists and medical practitioners to gain further insights into the body by providing an accurate and reliable instrument that can conform closely to the target areas of interest for continuous, long-term monitoring of the human body, while improving user experience.
Findings
The authors have highlighted current attempts of mechanically adaptive devices for health care, and the authors forecast key aspects for the future of these conformable biomedical devices and the ways in which these devices will revolutionize how health care is administered or obtained.
Originality/value
The authors conclude this paper with the perspective on the challenges of implementing this technology for practical use, including device packaging, environmental life cycle, data privacy, industry partnership and collaboration.
Details
Keywords
Sara V. Fernandez, David Sadat, Farita Tasnim, Daniel Acosta, Laura Schwendeman, Shirin Shahsavari and Canan Dagdeviren
Although conformable devices are commonly designed to couple with the human body for personalized and localized medicine, their applications are expanding rapidly. This paper aims…
Abstract
Purpose
Although conformable devices are commonly designed to couple with the human body for personalized and localized medicine, their applications are expanding rapidly. This paper aims to delineate this expansion and predict greater implications in diverse fields.
Design/methodology/approach
Today’s device technologies continue to face fundamental obstacles preventing their seamless integration with target objects to effectively access, evaluate and alter self-specific physical patterns, while still providing physical comfort and enabling continuous data collection. Due to their extreme mechanical compliance, conformable devices permit the query of signals occurring at interfaces so as to decode and encode biological, chemical and mechanical patterns with high resolution, precision and accuracy. These unique and versatile capabilities allow for a marked change in the approach to tackling scientific questions, with the ability to address societal challenges at large.
Findings
Here, this study highlights the current state of these devices in a wide range of fields, such as interactive teaching, textiles, robotics, buildings and infrastructure, agriculture, climate and space, and further forecasts essential features of these devices in the near future.
Originality/value
This study justifies conformable devices’ growing utility through a novel quantitative analysis methodology that indexes peer-reviewed journal articles based on specific keywords, whereby this study tracks keyword frequency over time across specific fields in conjunction with conformability-like topics. The resulting trends’ trajectories provide the foundation for this study’s future projections. This study concludes with a perspective on the possible challenges concomitant with a ubiquitous presence of these technologies, including manufacturing, wireless communication, storage, compression, privacy and sharing of data, environmental sustainability, avoidance of inequality and bias and collaboration between stakeholders at all levels of impact.
Details