Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 28 December 2020

Mathieu Gerber, Guillaume Callerant, Christophe Espanet, Farid Meibody-Tabar and Noureddine Takorabet

The purpose of this paper is to study the high-frequency impacts of fast switching wide-bandgap transistors on electronic and motor designs. The high-frequency power converters…

446

Abstract

Purpose

The purpose of this paper is to study the high-frequency impacts of fast switching wide-bandgap transistors on electronic and motor designs. The high-frequency power converters, dedicated to driving high-speed motors, require specific models to design predictively electronic and motors.

Design/methodology/approach

From magnetic and electric models, the high-frequency parasitic elements for both electronics and motor are determined. Then, high-frequency circuit models accounting for of parasitic element extractions are built to study the wide bandgap transistors commutations and their impacts on motor windings.

Findings

The results of the models, for electronics and motors, are promising. The high-frequency commutation cell study is used to optimize the layouts and to improve the commutation behaviours and performances. The impact of the switching speed is highlighted on the winding voltage susceptibility. Then, the switching frequency and commutation rapidity can be both optimized to increase the performance of motor and electronics. The electronic model is validated by experimentations.

Research limitations/implications

The method can be only applied to the existing motor and electronic designs. It is not taken into account in an automized global high-frequency optimizer.

Originality/value

Helped by magnetic and electric FEA calculations where the parasitic element extractions are performed. The switching frequency and commutation rapidity can be both optimized to increase the performance of motor and electronics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 11 May 2010

Babak Vaseghi, Noureddine Takorabet and Farid Meibody‐Tabar

The purpose of this paper is to present a study and analysis of insulation failure inter‐turn fault in induction machines (IMs).

537

Abstract

Purpose

The purpose of this paper is to present a study and analysis of insulation failure inter‐turn fault in induction machines (IMs).

Design/methodology/approach

A time stepping finite element method (FEM) analysis is performed for the study of IM with inter‐turn fault and determining the machine parameters (self and mutual inductances) after occurring fault. A simple dynamic model for IM with inter‐turn fault is presented. The model parameters are obtained by FEM analysis. An experimental test is also carried out to verify the results.

Findings

The behavior of IM is studied under various insulation failure inter‐turn fault conditions and severity using FEM. The paper's results help the machine designers to improve the fault tolerance as well the overall design of the machine drive system. It can also be useful for predict and detection of fault in IM.

Practical implications

Predicting and detection of turn faults in IM are in industry very helpful because it avoids the fully damage of IM and it is more easy to repair the machine. Designing a fault tolerant IM is required in some applications for increasing the reliability.

Originality/value

By using FEM for studying the fault, the machine parameters which are calculated with FEM and the study's results are very precise and accurate because the flux fluctuation after occurring fault has been taken into account. On the other hand, the fault model is very fast, global and accurate. It can be used in model‐based health monitoring systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 13 July 2010

Eric Duckler Kenmoe Fankem, Noureddine Takorabet, Farid Meibody‐Tabar and François Michel Sargos

The purpose of this paper is to present a coupled finite element (FE) – reluctance network model for a hybrid step motor.

226

Abstract

Purpose

The purpose of this paper is to present a coupled finite element (FE) – reluctance network model for a hybrid step motor.

Design/methodology/approach

The equivalent permeances of the air‐gap are determined by 2D nonlinear FE computations. The results of the 2D model are used in a 3D analytical model. A spectral decomposition and a nonlinear fitting of the amplitudes of the permeance harmonics are performed to account for both saturation and high order harmonic effects. The nonlinear resolution of the circuit equations is performed with an iterative process. The performances are determined by using the principle of virtual works.

Findings

The method is validated with a 2D FE computation and then applied to a 3D hybrid step motor.

Originality/value

The proposed method enables fast and efficient computations of the performances of hybrid stepping motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3
Per page
102050