Search results

1 – 3 of 3
Article
Publication date: 3 July 2024

Saleh Abu Dabous, Ahmad Alzghoul and Fakhariya Ibrahim

Prediction models are essential tools for transportation agencies to forecast the condition of bridge decks based on available data, and artificial intelligence is paramount for…

Abstract

Purpose

Prediction models are essential tools for transportation agencies to forecast the condition of bridge decks based on available data, and artificial intelligence is paramount for this purpose. This study aims at proposing a bridge deck condition prediction model by assessing various classification and regression algorithms.

Design/methodology/approach

The 2019 National Bridge Inventory database is considered for model development. Eight different feature selection techniques, along with their mean and frequency, are used to identify the critical features influencing deck condition ratings. Thereafter, four regression and four classification algorithms are applied to predict condition ratings based on the selected features, and their performances are evaluated and compared with respect to the mean absolute error (MAE).

Findings

Classification algorithms outperform regression algorithms in predicting deck condition ratings. Due to its minimal MAE (0.369), the random forest classifier with eleven features is recommended as the preferred condition prediction model. The identified dominant features are superstructure condition, age, structural evaluation, substructure condition, inventory rating, maximum span length, deck area, average daily traffic, operating rating, deck width, and the number of spans.

Practical implications

The proposed bridge deck condition prediction model offers a valuable tool for transportation agencies to plan maintenance and resource allocation efficiently, ultimately improving bridge safety and serviceability.

Originality/value

This study provides a detailed framework for applying machine learning in bridge condition prediction that applies to any bridge inventory database. Moreover, it uses a comprehensive dataset encompassing an entire region, broadening the model’s applicability and representation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 30 July 2024

Saleh Abu Dabous, Fakhariya Ibrahim and Ahmad Alzghoul

Bridge deterioration is a critical risk to public safety, which mandates regular inspection and maintenance to ensure sustainable transport services. Many models have been…

Abstract

Purpose

Bridge deterioration is a critical risk to public safety, which mandates regular inspection and maintenance to ensure sustainable transport services. Many models have been developed to aid in understanding deterioration patterns and in planning maintenance actions and fund allocation. This study aims at developing a deep-learning model to predict the deterioration of concrete bridge decks.

Design/methodology/approach

Three long short-term memory (LSTM) models are formulated to predict the condition rating of bridge decks, namely vanilla LSTM (vLSTM), stacked LSTM (sLSTM), and convolutional neural networks combined with LSTM (CNN-LSTM). The models are developed by utilising the National Bridge Inventory (NBI) datasets spanning from 2001 to 2019 to predict the deck condition ratings in 2021.

Findings

Results reveal that all three models have accuracies of 90% and above, with mean squared errors (MSE) between 0.81 and 0.103. Moreover, CNN-LSTM has the best performance, achieving an accuracy of 93%, coefficient of correlation of 0.91, R2 value of 0.83, and MSE of 0.081.

Research limitations/implications

The study used the NBI bridge inventory databases to develop the bridge deterioration models. Future studies can extend the model to other bridge databases and other applications in the construction industry.

Originality/value

This study provides a detailed and extensive data cleansing process to address the shortcomings in the NBI database. This research presents a framework for implementing artificial intelligence-based models to enhance maintenance planning and a guideline for utilising the NBI or other bridge inventory databases to develop accurate bridge deterioration models. Future studies can extend the model to other bridge databases and other applications in the construction industry.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 July 2022

Saleh Abu Dabous, Tareq Zadeh and Fakhariya Ibrahim

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the minimum…

Abstract

Purpose

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the minimum overall cost.

Design/methodology/approach

The research includes a review of the literature around formwork selection and analysis of data collected from the building construction industry to understand material failure modes. An FMECA-based model that estimates the total cost of a formwork system is developed by conducting a two-phased semi-structured interview and regression and statistical analyses. The model comprises material, manpower and failure mode costs. A case study of fifteen buildings is analysed using data collected from construction projects in the UAE to validate the model.

Findings

Results obtained indicate an average accuracy of 89% in predicting the total formwork cost using the proposed method. Moreover, results show that the costs incurred by failure modes account for 11% of the total cost on average.

Research limitations/implications

The analysis is limited to direct costs and costs associated with risks; other costs and risk factors are excluded. The proposed framework serves as a guide to construction project managers to enhance decision-making by addressing the indirect cost of failure modes.

Originality/value

The research proposes a novel formwork system selection method that improves upon the subjective conventional selection process by incorporating the risks and uncertainties associated with the failure modes of formwork systems into the decision-making process.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 3 of 3