Search results

1 – 2 of 2
Article
Publication date: 24 September 2024

Jinxin Liu, Huanqin Wang, Qiang Sun, Chufan Jiang, Jitong Zhou, Gehang Huang, Fajun Yu and Baolin Feng

This study aims to establish a multi-physics-coupled model for an electrostatic particulate matter (PM) sensor. The focus lies on investigating the deposition patterns of…

Abstract

Purpose

This study aims to establish a multi-physics-coupled model for an electrostatic particulate matter (PM) sensor. The focus lies on investigating the deposition patterns of particles within the sensor and the variation in the regeneration temperature field.

Design/methodology/approach

Computational simulations were initially conducted to analyse the distribution of particles under different temperature and airflow conditions. The study investigates how particles deposit within the sensor and explores methods to expedite the combustion of deposited particles for subsequent measurements.

Findings

The results indicate that a significant portion of the particles, approximately 61.8% of the total deposited particles, accumulates on the inside of the protective cover. To facilitate rapid combustion of these deposited particles, a ceramic heater was embedded within the metal shielding layer and tightly integrated with the high-voltage electrode. Silicon nitride ceramic, selected for its high strength, elevated temperature stability and excellent thermal conductivity, enables a relatively fast heating rate, ensuring a uniform temperature field distribution. Applying 27 W power to the silicon nitride heater rapidly raises the gas flow region's temperature within the sensor head to achieve a high-temperature regeneration state. Computational results demonstrate that within 200 s of heater operation, the sensor's internal temperature can exceed 600 °C, effectively ensuring thorough combustion of the deposited particles.

Originality/value

This study presents a novel approach to address the challenges associated with particle deposition in electrostatic PM sensors. By integrating a ceramic heater with specific material properties, the study proposes an effective method to expedite particle combustion for enhanced sensor performance.

Details

Sensor Review, vol. 44 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 January 2023

Jintao Yu, Xican Li, Shuang Cao and Fajun Liu

In order to overcome the uncertainty and improve the accuracy of spectral estimation, this paper aims to establish a grey fuzzy prediction model of soil organic matter content by…

Abstract

Purpose

In order to overcome the uncertainty and improve the accuracy of spectral estimation, this paper aims to establish a grey fuzzy prediction model of soil organic matter content by using grey theory and fuzzy theory.

Design/methodology/approach

Based on the data of 121 soil samples from Zhangqiu district and Jiyang district of Jinan City, Shandong Province, firstly, the soil spectral data are transformed by spectral transformation methods, and the spectral estimation factors are selected according to the principle of maximum correlation. Then, the generalized greyness of interval grey number is used to modify the estimation factors of modeling samples and test samples to improve the correlation. Finally, the hyper-spectral prediction model of soil organic matter is established by using the fuzzy recognition theory, and the model is optimized by adjusting the fuzzy classification number, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the generalized greyness of interval grey number can effectively improve the correlation between soil organic matter content and estimation factors, and the accuracy of the proposed model and test samples are significantly improved, where the determination coefficient R2 = 0.9213 and the mean relative error (MRE) = 6.3630% of 20 test samples. The research shows that the grey fuzzy prediction model proposed in this paper is feasible and effective, and provides a new way for hyper-spectral estimation of soil organic matter content.

Practical implications

The research shows that the grey fuzzy prediction model proposed in this paper can not only effectively deal with the three types of uncertainties in spectral estimation, but also realize the correction of estimation factors, which is helpful to improve the accuracy of modeling estimation. The research result enriches the theory and method of soil spectral estimation, and it also provides a new idea to deal with the three kinds of uncertainty in the prediction problem by using the three kinds of uncertainty theory.

Originality/value

The paper succeeds in realizing both the grey fuzzy prediction model for hyper-spectral estimating soil organic matter content and effectively dealing with the randomness, fuzziness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 2 of 2