Kushal Sharma, Neha Vijay, Faisal Z. Duraihem and Renu Jindal
The present findings aim to investigate the thermal behavior of water-based nanofluid flow over a rotating surface, focusing on understanding the effects of different types of…
Abstract
Purpose
The present findings aim to investigate the thermal behavior of water-based nanofluid flow over a rotating surface, focusing on understanding the effects of different types of nanoparticles on thermal efficiency, considering thermal radiation and variable viscosity effects. By considering four distinct nanoparticles – silicon dioxide titanium dioxide, aluminum oxide and molybdenum disulfide – the study aims to provide insights into how nanoparticle addition influences heat production, thermal boundary layer thickness and overall thermal performance.
Design/methodology/approach
The study employs computational methods, utilizing the BVP mid-rich algorithm for the solution procedure. The computational approach allows for a detailed investigation of the thermal behavior of nanofluid flows across a rotating surface under varying conditions.
Findings
The study concludes that adding nanoparticles in the base liquid increases heat production in the system, resulting in enhanced thermal boundary layer thickness. The comparative analysis shows that different nanoparticle types exhibit varying effects on thermal efficiency, suggesting that careful selection of nanoparticles can optimize heat transport and thermal management processes. Moreover, there's a noteworthy uptrend in the radial velocity profile concerning the stretching parameter, whereas a converse trend is observed in the thermal profile.
Originality/value
This study contributes original insights by comprehensively investigating the thermal behavior of water-based hybrid nanofluid flow over a rotating surface.
Details
Keywords
Maria Immaculate Joyce, Jagan Kandasamy and Sivasankaran Sivanandam
The objective of this work is to investigate the rate of entropy generation of a hybrid nanoliquid (Cu-Ag/Water) flowing on a stretching sheet in the presence of convective…
Abstract
Purpose
The objective of this work is to investigate the rate of entropy generation of a hybrid nanoliquid (Cu-Ag/Water) flowing on a stretching sheet in the presence of convective boundary conditions, heat generation/absorption, double stratification and Stefan blowing. At present, the capability of interchange of thermal energy is not concerned only with an estimation of the amplification in the rate of heat exchange but also depends on profitable and obliging contemplation. Acknowledging the demands, researchers have been associated with the refinement of the performance of a heat exchange, which is referred to as an intensification of the interchange of heat.
Design/methodology/approach
By using a similarity transformation, the system of governing partial differential equations (PDEs) is transformed into the system of nonlinear ordinary differential equations (ODEs). The rebuilt ordinary differential equations are then solved by applying the homotopy analysis method. After computing the temperature, concentration and velocity profiles for a range of relevant study parameters, the resulting results are examined and discussed.
Findings
Elevating the Stefan blowing parameter values enhances the temperature profile. Conversely, it diminishes with increasing concentration stratification, thermal stratification and heat generation/absorption coefficient. The rate of entropy generation rises with increasing diffusion parameter, Brinkman number and concentration difference parameter. Stronger viscous forces between the sheet and the fluid flow cause skin friction to increase as
Practical implications
The transmission of mass and heat is the basis of the current study, which is useful in a number of industrial and technological domains.
Originality/value
The paper investigates entropy production and heat transmission in a hybrid nanoliquid flow over a stretching sheet, incorporating factors such as heat generation/absorption, convective boundary conditions, Stefan blowing and double stratification. The research highlights a gap in the existing literature, indicating that this specific combination of factors has not been previously explored.