Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 August 2021

Faheem Ejaz, William Pao and Hafiz Muhammad Ali

Offshore industries encounter severe production downtime due to high liquid carryovers in the T-junction. The diameter ratio and flow regime can significantly affect the excess…

242

Abstract

Purpose

Offshore industries encounter severe production downtime due to high liquid carryovers in the T-junction. The diameter ratio and flow regime can significantly affect the excess liquid carryovers. Unfortunately, regular and reduce T-junctions have low separation efficiencies. Ansys as a commercial computational fluid dynamics (CFD) software was used to model and numerically inspect a novel diverging T-junction design. The purpose of diverging T-junction is to merge the specific characteristics of regular and reduced T-junctions, ultimately increasing separation efficiency. The purpose of this study is to numerically compute the separation efficiency for five distinct diverging T-junctions for eight different velocity ratios. The results were compared to regular and converging T-junctions.

Design/methodology/approach

Air-water slug flow was simulated with the help of the volume of the fluid model, coupled with the K-epsilon turbulence model to track liquid-gas interfaces.

Findings

The results of this study indicated that T-junctions with upstream and downstream diameter ratio combinations of 0.8–1 and 0.5–1 achieved separation efficiency of 96% and 94.5%, respectively. These two diverging T-junctions had significantly higher separation efficiencies when compared to regular and converging T-junctions. Results also revealed that over-reduction of upstream and downstream diameter ratios below 0.5 and 1, respectively, lead to declination in separation efficiency.

Research limitations/implications

The present study is constrained for air and water as working fluids. Nevertheless, the results apply to other applications as well.

Practical implications

The proposed T-junction is intended to reduce excessive liquid carryovers and frequent plant shutdowns. Thus, lowering operational costs and enhancing separation efficiency.

Social implications

Higher separation efficiency achieved by using diverging T-junction enabled reduced production downtimes and resulted in lower maintenance costs.

Originality/value

A novel T-junction design was proposed in this study with a separation efficiency of higher than 90%. High separation efficiency eliminates loss of time during shutdowns and lowers maintenance costs. Furthermore, limitations of this study were also addressed as the lower upstream and downstream diameter ratio does not always enhance separation efficiency.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 12 April 2022

Faheem Ejaz, William Pao and Hafiz Muhammad Ali

In plethora of petroleum, chemical and heat transfer applications, T-junction is often used to partially separate gas from other fluids, to reduce work burden on other separating…

189

Abstract

Purpose

In plethora of petroleum, chemical and heat transfer applications, T-junction is often used to partially separate gas from other fluids, to reduce work burden on other separating equipment. The abundance of liquid carryovers from the T-junction side arm is the cause of production downtime in terms of frequent tripping of downstream equipment train. Literature review revealed that regular and reduced T-junctions either have high peak liquid carryovers (PLCs) or the liquid appears early in the side arm [liquid carryover threshold (LCT)]. The purpose of this study is to harvest the useful features of regular and reduced T-junction and analyze diverging T-junction having upstream and downstream pipes.

Design/methodology/approach

Volume of fluid as a multiphase model, available in ANSYS Fluent, was used to simulate air–water slug flow in five diverging T-junctions for eight distinct velocity ratios. PLCs and LCT were chosen as key performance indices.

Findings

The results indicated that T (0.5–1) and (0.8–1) performed better as low liquid carryovers and high LCT were achieved having separation efficiencies of 96% and 94.5%, respectively. These two diverging T-junctions had significantly lower PLCs and high LCT when compared to other three T-junctions. Results showed that the sudden reduction in the side arm diameter results in high liquid carryovers and lower LCT. Low water and air superficial velocities tend to have low PLC and high LCT.

Research limitations/implications

This study involved working fluids air and water but applies to other types of fluids as well.

Practical implications

The novel T-junction design introduced in this study has significantly higher LCT and lower PLC. This is an indication of higher phase separation performance as compared to other types of T-junctions. Because of lower liquid take-offs, there will be less frequent downstream equipment tripping resulting in lower maintenance costs. Empirical correlations presented in this study can predict fraction of gas and liquid in the side arm without having to repeat the experiment.

Social implications

Maintenance costs and production downtime can be significantly reduced with the implication of diverging T-junction design.

Originality/value

The presented study revealed that the diameter ratio has a significant impact on PLC and LCT. It can be concluded that novel T-junction designs, T2 and T3, achieved high phase separation; therefore, it is favorable to use in the industry. Furthermore, a few limitations in terms of diameter ratio are also discussed in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 30 September 2024

Fazal ur Rehman, Farwida Javed, Sadia Ejaz Shiekh and Viktor Prokop

This study aims to explore the impact of cultural practices on consumers’ buying behavior in sales promotional activities toward the fashion clothing brands based on the Theory of…

248

Abstract

Purpose

This study aims to explore the impact of cultural practices on consumers’ buying behavior in sales promotional activities toward the fashion clothing brands based on the Theory of Black-Box Model under the conditions of COVID-19 at Pakistan.

Design/methodology/approach

The study has collected data through questionnaire-based survey from 600 consumers of fashion clothing brands using convenience sampling technique in Pakistan and analyzed through PLS-SEM to find results.

Findings

The results confirmed that cultural practices and sales promotional activities have positive significant relationship with the consumers’ buying behavior during the celebration of events, also under the conditions of COVID-19. The study also found that ethnocentrism and xenocentrism are positively associated with cultural practices while social factors, physical factors, product innovation and marketing innovation with sales promotional activities.

Practical implications

The outcomes provide interesting insights about consumers’ assessment toward the sale’s promotional activities and cultural practices of fashion clothing brands during the celebration of events and guide the marketing practitioners to develop the customers edifying and environment-oriented business strategies to boost up the buying behavior in crisis situations.

Originality/value

Although prior research has widely investigated the cultural practices, sales promotion and consumers’ buying behavior in various settings, but to the best of the authors’ knowledge, this is the first study in these domains.

Details

foresight, vol. 26 no. 5
Type: Research Article
ISSN: 1463-6689

Keywords

1 – 3 of 3
Per page
102050