Search results
1 – 3 of 3Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa
This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic…
Abstract
Purpose
This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic dissipation and convective boundary condition.
Design/methodology/approach
Similarity variables are introduced and used in reducing the governing partial differential equations into a system of ordinary differential equations. A built-in bvp4c solver in MATLAB is then used in the computation of the numerical solutions for equations (7) and (8) subject to the boundary conditions (9). Then, the behavior of the flow and thermal fields of the hybrid nanofluid, with various values of controlling parameters, are analyzed.
Findings
The steady flow problem resulted in multiple (dual) solutions. A stability analysis performed to identify the stable solution applicable in practice revealed that the first solution is stable while the second solution is unstable. The skin friction coefficient and Nusselt number of the hybrid nanofluid are found to be greater than the Al2O3–H2O nanofluid. Thus, the hybrid nanofluid has a better heat transfer performance than the nanofluid. Besides that, the presence of the magnetic field, suction, convective boundary condition and the enhancement of nanoparticle volume fraction of Cu augments the skin friction coefficient and Nusselt number of the hybrid nanofluid. Meanwhile, the presence of viscous-Ohmic dissipation reduces the heat transfer performance of the fluid.
Originality/value
To the best of the authors’ knowledge, the present results are original and new for the study of the flow and heat transfer of Al2O3–Cu/H2O hybrid nanofluid past a permeable radially shrinking disk. Considerable efforts have been directed toward the study of the boundary layer flow and heat transfer over stretching/shrinking surfaces and disks because of its numerous industrial applications, such as electronic, power, manufacturing, aerospace and transportation industries. Common heat transfer fluids such as water, alumina, cuprum and engine oil have limited heat transfer capabilities due to their low heat transfer properties. In contrast, metals have higher thermal conductivities than these fluids. Therefore, it is desirable to combine the two substances to produce a heat transfer medium that behaves like a fluid but has higher heat transfer properties.
Details
Keywords
Mohamad Mustaqim Junoh, Fadzilah Md Ali, Norihan Md Arifin, Norfifah Bachok and Ioan Pop
The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting…
Abstract
Purpose
The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field.
Design/methodology/approach
The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB.
Findings
It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable.
Practical implications
This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist.
Originality/value
The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.
Details
Keywords
Fadzilah Md Ali, Kohilavani Naganthran, Roslinda Nazar and Ioan Pop
This study aims to perform a stability analysis on a steady magnetohydrodynamic (MHD) mixed convection boundary-layer stagnation-point flow of an incompressible, viscous and…
Abstract
Purpose
This study aims to perform a stability analysis on a steady magnetohydrodynamic (MHD) mixed convection boundary-layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid over a vertical flat plate. The effect of induced magnetic field is also considered.
Design/methodology/approach
The governing boundary layer equations are transformed into a system of ordinary differential equations using the similarity transformations. The system is then solved numerically using the “bvp4c” function in MATLAB.
Findings
Dual solutions are found to exist for a certain range of the buoyancy parameter for both the assisting and opposing flows. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable.
Practical implications
This problem is important in many metallurgical processes, namely, drawing, annealing and tinning of copper wires. The results obtained are very useful for researchers to determine which solution is physically stable, whereby mathematically more than one solution exists for the skin friction coefficient and the heat transfer characteristics.
Originality/value
The present results of the stability analysis are original and new for the problem of MHD mixed convection stagnation-point flow of viscous conducting fluid over a vertical flat plate, with the effect of induced magnetic field.
Details