Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 27 August 2024

Baris Kirim, Emrecan Soylemez, Evren Tan and Evren Yasa

This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy…

97

Abstract

Purpose

This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy. Single-bead and part-scale experiments and modeling were studied. Scanning strategies were described by the process controlling functions that enabled modeling.

Design/methodology/approach

The finite element analysis thermal model was used along with the powder bed fusion with electron beam experiments. The proposed strategy involves dividing a part into smaller sections and creating meso-scale models for each subsection. These meso-scale models take into consideration the variable process parameters, including power and velocity of the moving heat source, during part building. Subsequently, these models are integrated to perform partscale simulations, enabling more realistic predictions of thermal accumulation and resulting distortions. The model was built and validated with single-bead experiments and bulky parts with different features.

Findings

Single-bead experiments demonstrated an average error rate of 6%–24% for melt pool dimension prediction using the proposed meso-scale models with different scanning control functions. Part-scale simulations for three different geometries (cantilever beams with supports, bulk artifact and topology-optimized transfer arm) showed good agreement between modeled temperature changes and experimental deformation values.

Originality/value

This study presents a novel approach for electron beam powder bed fusion modeling that leverages meso-scale models to capture the influence of variable process parameters on part quality. This strategy offers improved accuracy for predicting part geometry and identifying potential defects, leading to a more efficient additive manufacturing process.

Access Restricted. View access options
Article
Publication date: 2 August 2011

Evren Yasa, Jan Deckers and Jean‐Pierre Kruth

Selective laser melting (SLM) is a powder metallurgical (PM) additive manufacturing process whereby a three‐dimensional part is built in a layer‐wise manner. During the process, a…

7093

Abstract

Purpose

Selective laser melting (SLM) is a powder metallurgical (PM) additive manufacturing process whereby a three‐dimensional part is built in a layer‐wise manner. During the process, a high intensity laser beam selectively scans a powder bed according to the computer‐aided design data of the part to be produced and the powder metal particles are completely molten. The process is capable of producing near full density (∼98‐99 per cent relative density) and functional metallic parts with a high geometrical freedom. However, insufficient surface quality of produced parts is one of the important limitations of the process. The purpose of this study is to apply laser re‐melting using a continuous wave laser during SLM production of 316L stainless steel and Ti6Al4V parts to overcome this limitation.

Design/methodology/approach

After each layer is fully molten, the same slice data are used to re‐expose the layer for laser re‐melting. In this manner, laser re‐melting does not only improve the surface quality on the top surfaces, but also has the potential to change the microstructure and to improve the obtained density. The influence of laser re‐melting on the surface quality, density and microstructure is studied varying the operating parameters for re‐melting such as scan speed, laser power and scan spacing.

Findings

It is concluded that laser re‐melting is a promising method to enhance the density and surface quality of SLM parts at a cost of longer production times. Laser re‐melting improves the density to almost 100 per cent whereas 90 per cent enhancement is achieved in the surface quality of SLM parts after laser re‐melting. The microhardness is improved in the laser re‐molten zone if sufficiently high‐energy densities are provided, probably due to a fine‐cell size encountered in the microstructure.

Originality/value

There has been extensive research in the field of laser surface modification techniques, e.g. laser polishing, laser hardening and laser surface melting, applied to bulk materials produced by conventional manufacturing processes. However, those studies only relate to laser enhancement of surface or sub‐surface properties of parts produced using bulk material. They do not aim at enhancement of core material properties, nor surface enhancement of (rough) surfaces produced in a PM way by SLM. This study is carried out to cover the gap and analyze the advantages of laser re‐melting in the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 17 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2
Per page
102050