Search results
1 – 4 of 4Daphne Pantousa and Euripidis Mistakidis
The primary purpose of this paper is the development of a fire–structure interface (FSI) model, which is referred in this study as a simplified “dual-layer” model. It is oriented…
Abstract
Purpose
The primary purpose of this paper is the development of a fire–structure interface (FSI) model, which is referred in this study as a simplified “dual-layer” model. It is oriented for design purposes, in the cases where fire-compartments exceed the “regular” dimensions, as they are defined by the guidelines of the codes (EN 1991-1-2).
Design/methodology/approach
The model can be used at the post-processing stage of computational fluid dynamics (CFD) analysis and it is based on the gas-temperature field (spatial and temporal) of the fire-compartment. To use the “dual-layer” model, first the gas-temperature (discrete) function along the height of the fire-compartment, at discrete plan–view points should be determined through the output of the CFD analysis. The model “compresses” the point data to (spatial) virtual zones, which are divided into two layers (with respect to the height of the fire-compartment) of uniform temperature: the upper (hot) layer and the lower (cold) layer.
Findings
The model calculates the temporal evolution of the gas-temperature in the fire compartment in every virtual zone which is divided in two layers (hot and cold layer).
Originality/value
The main advantage of this methodology is that actually only three different variables (height of interface upper-layer temperature and lower-layer temperature) are exported during the post-processing stage of the CFD analysis, for every virtual zone. Next, the gas-temperature can be used for the determination of the temperature profile of structural members using simple models that are proposed in EN 1993-1-2.
Details
Keywords
Apostolos Koukouselis, Konstantinos Chatziioannou, Euripidis Mistakidis and Vanessa Katsardi
The design of compliant towers in deep waters is greatly affected by their dynamic response to wave loads as well as by the geometrical and material nonlinearities that appear. In…
Abstract
Purpose
The design of compliant towers in deep waters is greatly affected by their dynamic response to wave loads as well as by the geometrical and material nonlinearities that appear. In general, a nonlinear time history dynamic analysis is the most appropriate one to be applied to capture the exact response of the structure under wave loading. However, this type of analysis is complex and time-consuming. This paper aims to develop a simplified methodology, which can adequately approximate the maximum response yielded by a dynamic analysis by means of a static analysis.
Design/methodology/approach
Various types of time history dynamic analysis are first applied on a detailed structural model, ranging from linear to fully nonlinear, that are used as reference solutions. In the sequel, a simplified analysis model is formulated, capable of reproducing the response of the entire structure with significantly reduced computational cost. In the next stage, this model is used to obtain the linear and nonlinear response spectra of the structure. Finally, these spectra are used to formulate a simplified design approach, based on equivalent static loads.
Findings
This simplified design approach produces good results in cases that the response is mainly governed by the first eigenmode, which is the case when compliant towers are considered.
Originality/value
The present paper borrows ideas from the area of earthquake engineering, where simplified methodologies can be used for the design of a certain class of structures. However, the development of a simplified methodology for the approximation of the dynamic behavior of offshore structures under wave loading is a much more complex problem, which, to the authors’ knowledge, has not been addressed till now.
Details
Keywords
The purpose of this paper is to provide the research and practising engineers with insight on the benefits of using low‐yield point steel with respect to ordinary steel as a…
Abstract
Purpose
The purpose of this paper is to provide the research and practising engineers with insight on the benefits of using low‐yield point steel with respect to ordinary steel as a construction material for shear wall panels. The paper seeks to focus on the behaviour of such panels when installed in new or existing structures in order to improve their seismic performance.
Design/methodology/approach
Finite element models are applied in order to approximate the structural response of low‐yield steel panels, used for seismic applications. Owing to the specific characteristics of the problem at hand, geometric and material nonlinearities have to be accurately considered. For comparison reasons, low‐yield point steel and ordinary steel are considered as construction materials for the aforementioned panels. The paper examines both the case of “pure shear” steel panel and also the more realistic case that the panel is encased in the surrounding frame.
Findings
The paper reaches a number of interesting conclusions. The beneficial behaviour of low‐yield steel panels with respect to ordinary steel panels is verified. Comments are made distinguishing the differences in the behaviour of panels surrounded by strong elements (“encased” panels) compared with that of panels submitted to pure shear. Finally, the improved seismic behaviour of existing structures retrofitted by shear wall panels is verified.
Originality/value
The paper exhibits numerically the advantages of low‐yield point steel with respect to ordinary steel as a construction material for panels and, second, contributes to the comprehension of the realistic panel behaviour of encased panels. More specifically, the paper focuses on the differences in the behaviour of encased steel panels with respect to the “pure shear” steel panels.
Details
Keywords
Olympia Panagouli and Euripidis Mistakidis
The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the…
Abstract
Purpose
The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the contact interfacial stresses. The study is based on a numerical approach. The paper focuses on the differences between the cases of elastic and inelastic materials having as primary parameter the resolution of the interface.
Design/methodology/approach
A multi‐resolution parametric analysis is performed for fractal interfaces dividing a plane structure into two parts. On these interfaces, unilateral contact conditions are assumed to hold. The computer‐generated surfaces adopted here are self‐affine curves, characterized by a precise value of the resolution δ of the fractal set. Different contact simulations are studied by applying a horizontal displacement s on the upper part of the structure. For every value of s, a solution is taken in terms of normal forces and displacements at the interface. The procedure is repeated for different values of the resolution δ. At each scale, a classical Euclidean problem is solved by using finite element models. In the limit of the finest resolution, fractal behaviour is achieved.
Findings
The paper leads to a number of interesting conclusions. In the case of linear elastic analysis, the contact area and, consequently, the contact interfacial stresses depend strongly on the resolution of the fractal interface. Contrary, in the case of inelastic analysis, this dependence is verified only for the lower resolution values. As the resolution becomes higher, the contact area tends to become independent from the resolution.
Originality/value
The originality of the paper lies on the results and the corresponding conclusions obtained for the case of inelastic material behaviour, while the results for the case of elastic analysis verify the findings of other researchers.
Details