Search results
1 – 2 of 2This paper aims to describe how building information model (BIM) and big data can be combined in the same interface for providing new value to stakeholders, such as the property…
Abstract
Purpose
This paper aims to describe how building information model (BIM) and big data can be combined in the same interface for providing new value to stakeholders, such as the property owner and user, as well as property service and workplace service companies. The research presents a new concept, which shows how the BIM can be exploited efficiently during maintenance.
Design/methodology/approach
Initially, existing facility management (FM) processes were investigated to find out how to digitize them and identify bottlenecks. Second, BIM’s data content was explored to identify the information that could be used to streamline FM processes. Third, the potential of the active data measured in the building was evaluated. Finally, research was undertaken to find out how constantly fluctuating information can be combined with BIM objects and what kind of added value that combination could offer. The literature review was used to support the primary contribution. In addition, the research problems were described and the basics of the research were obtained by interviews. The author has interviewed 27 professionals from several stakeholders.
Findings
The first finding is that the BIM can serve as a platform for building use, various services and management when it has been adequately generated during the planning and construction phases and enriched before being commissioned. The other essential finding is the theory of conditions data model (CDM), which is a technical environment that combines active data with BIM. The most important advantages of BIM in FM are as follows: • Building owner attains better user satisfaction, acquires better quality and smarter services, saves energy, ensures better indoor conditions and improves building profitability. • Service providers can develop and offer new services, speed up operations, save resources and generate more profits. • The occupant gets a better user experience, faster and higher quality services and better indoor conditions.
Research limitations/implications
The CDM enables to generate for the real estate and construction (RE&C) sector a novel BIM-based ecosystem with standard rules, instead of every individual operator developing his/her own unique solution for BIM use in FM. This will have an impact on the entire RE&C sector’s operating methods and will have significant financial implications in the near future. Application of this research is limited to office buildings where indoor condition measuring is undertaken continuously and where the knowledge of the use cases of spaces is available. In addition, the proper BIM in the Industry Foundation Classes format must exist. The evaluation of the validity of big data is not discussed in this article. Visualization of data and content of user interfaces will be the topic of another article by the author. This article does not deal with intricate technical details, but crucial issues are defined.
Originality/value
The article presents a unique method for BIM use in FM. The theory of CDM (how to combine active data with BIM) is completely new and a similar solution has not been presented earlier. The theory of the presented method will be the crucial key for BIM use and will lead worldwide commissioning. Currently, the theory is under test in the practical pilot project. The results of the project will be published in the next article.
Details
Keywords
Esa Halmetoja and Francisco Forns-Samso
The purpose of this paper is to evaluate six different graphical user interfaces (GUIs) for facilities operations using human–machine interaction (HMI) theories.
Abstract
Purpose
The purpose of this paper is to evaluate six different graphical user interfaces (GUIs) for facilities operations using human–machine interaction (HMI) theories.
Design/methodology/approach
The authors used a combined multi-functional method that includes a review of the theories behind HMI for GUIs as its first approach. Consequently, heuristic evaluations were conducted to identify usability problems in a professional context. Ultimately, thematic interviews were conducted with property managers and service staff to determine special needs for the interaction of humans and the built environment.
Findings
The heuristic evaluation revealed that not all the studied applications were complete when the study was done. The significant non-motivational factor was slowness, and a lighter application means the GUI is more comfortable and faster to use. The evaluators recommended not using actions that deviate from regular practice. Proper implementation of the GUI would make it easier and quicker to work on property maintenance and management. The thematic interviews concluded that the GUIs form an excellent solution that enables communication between the occupant, owner and service provider. Indoor conditions monitoring was seen as the most compelling use case for GUIs. Two-dimensional (2D) layouts are more demonstrative and faster than three-dimensional (3D) layouts for monitoring purposes.
Practical implications
The study provides an objective view of the strengths and weaknesses of specific types of GUI. So, it can help to select a suitable GUI for a particular environment. The 3D view is not seen as necessary for monitoring indoor conditions room by room or sending a service request. Many occupants’ services can be implemented without any particular layout. On the other hand, some advanced services were desired for the occupants, such as monitoring occupancy, making space reservations and people tracking. These aspects require a 2D layout at least. The building information model is seen as useful, especially when monitoring complex technical systems.
Originality/value
Earlier investigations have primarily concentrated on investigating human–computer interaction. The authors’ studied human–building interaction instead. The notable difference to previous efforts is that the authors considered the GUI as a medium with which to communicate with the built environment, and looked at its benefits for top-level processes, not for the user interface itself.
Details