Search results

1 – 10 of 15
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 November 2015

Bo Huang, Yuanhua Lin, Ambrish Singh, Eno E Ebenso, Lujiang Zhou, Wanying Liu and Kuanhai Deng

– The purpose of this paper is to test bagasse extract as an effective corrosion inhibitor.

204

Abstract

Purpose

The purpose of this paper is to test bagasse extract as an effective corrosion inhibitor.

Design/methodology/approach

The bagasse was extracted without any toxic substance and was found to be effective for corrosion of J55 steel.

Findings

The inhibition efficiency of bagasse was more than 90 per cent in 3.5 per cent NaCl solution saturated with CO2 for corrosion inhibition of J55 steel.

Research limitations/implications

The inhibition effect of Saccharum sinense bagasse extract on the corrosion of J55 steel in 3.5 weight per cent NaCl saturated with CO2 solution was investigated by means of Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, polarization curve and scanning electron microscope.

Practical implications

It can be used as low-cost corrosion inhibitor.

Social implications

It is an environment-friendly corrosion inhibitor.

Originality/value

This work is original and carried out in Southwest Petroleum University, China. This is not communicated anywhere else.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 1 November 2006

S.A. Umoren, E.E. Ebenso, P.C. Okafor and O. Ogbobe

To determine the inhibition efficiency and adsorption characteristics of two water soluble polymers namely polyvinyl alcohol (PVA) and polyethyleneglycol (PGE) as corrosion…

966

Abstract

Purpose

To determine the inhibition efficiency and adsorption characteristics of two water soluble polymers namely polyvinyl alcohol (PVA) and polyethyleneglycol (PGE) as corrosion inhibitors of mild steel in H2SO4.

Design/methodology/approach

The inhibition efficiencies of PVA and PEG were evaluated using the weight loss and hydrogen evolution techniques at 30‐60°C.

Findings

The inhibition efficiency (I per cent) of the inhibitors increased with increase in concentration and temperature. The inhibitors (PVA and PEG) were found to obey Temkin, Freundlich and Langmuir adsorption isotherms from the fit of the experimental data at all concentrations and temperatures studied. The phenomenon of chemical adsorption is proposed from the activation parameters obtained. PEG was found to be a better inhibitor than PVA.

Research limitations/implications

The mechanistic aspect of the corrosion inhibition can be better understood using electrochemical studies such as polarization and AC impedance spectra.

Practical implications

The findings may be useful in cooling water systems in industries under simulated conditions.

Originality/value

This paper provides additional new information on the inhibiting characteristics of PVA and PEG as promising corrosion inhibitors.

Details

Pigment & Resin Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 18 September 2007

P.C. Okafor, V.I. Osabor and E.E. Ebenso

This paper aims to investigate the inhibitive effect of ethanol extracts of Garcinia kola (EXG) for the corrosion of mild steel in H2SO4 solutions. The study is another trial to…

760

Abstract

Purpose

This paper aims to investigate the inhibitive effect of ethanol extracts of Garcinia kola (EXG) for the corrosion of mild steel in H2SO4 solutions. The study is another trial to find a cheap and environmentally safe inhibitor for mild steel corrosion.

Design/methodology/approach

The inhibition efficiency has been evaluated using the hydrogen evolution technique at 30‐60°C. The mechanism of adsorption inhibition and type of adsorption isotherm were proposed based on the trend of inhibition efficiency and kinetic data.

Findings

The results obtained indicate that EXG inhibits the corrosion of mild steel in acidic medium and that the inhibition efficiency increases with an increase in the concentration of ethanol extracts and decreasing temperature. The inhibition efficiency increased on addition of potassium iodide to EXG, indicating synergism. The experimental data obeyed the Langmuir adsorption isotherm as well as the El‐Awady et al. thermodynamic‐kinetic model. The activation energy of inhibition of 6.8508 KJ/mol calculated for the corrosion process suggests that the EXG molecules are physically adsorbed on the metal surface.

Research limitations/implications

Further investigations involving electrochemical studies such as polarization method will provide further enlightenment on the mechanistic aspect of the corrosion inhibition.

Originality/value

This paper provides new information on the possible application of EXG as an environmentally friendly corrosion inhibitor under the specified conditions. This environmentally friendly inhibitor could find possible applications in metal surface anodizing and surface coatings.

Details

Pigment & Resin Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2006

S.A. Umoren, I.B. Obot, E.E. Ebenso, P.C. Okafor, O. Ogbobe and E.E. Oguzie

To investigate the inhibitive effect of gum arabic (GA) for the corrosion of aluminium in alkaline (NaOH) medium and determine its adsorption characteristics. The present work is…

1310

Abstract

Purpose

To investigate the inhibitive effect of gum arabic (GA) for the corrosion of aluminium in alkaline (NaOH) medium and determine its adsorption characteristics. The present work is another trial to find a cheap and environmentally safe inhibitor for aluminium corrosion.

Design/methodology/approach

The inhibition efficiency (%I) has been evaluated using the hydrogen evolution (via the gasometric assembly) and the thermometric methods at 30 and 40°C. The concentrations of GA (inhibitor) used were 0.1‐0.5 g/l and the concentrations of NaOH (the corrodent) were 0.1‐2.5 M. The mechanism of adsorption inhibition and type of adsorption isotherms were proposed from the trend of inhibition efficiency with temperature, Ea, ΔGads and Qads values.

Findings

GA inhibited the corrosion of aluminium in NaOH solutions. The inhibition efficiency increased with increase in GA concentration and with increase in temperature. Phenomenon of chemical adsorption is proposed for the inhibition and the process followed the Langmuir and Freundlich adsorption isotherms. The results obtained in this study for the %I were comparable for the two methods used and were corroborated by kinetic and thermodynamic parameters evaluated from the experimental data.

Research limitations/implications

Further investigations involving electrochemical studies such as polarization method will enlighten more on the mechanistic aspect of the corrosion inhibition.

Originality/value

This paper provides new information on the possible application of GA as an environmentally friendly corrosion inhibitor even in highly aggressive alkaline environments. It has not been published elsewhere.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2006

S.A. Umoren, O. Ogbobe, E.E. Ebenso and U.J. Ekpe

To investigate the effect of halide ions on the corrosion inhibition of mild steel using polyvinyl alcohol (PVA) in H2SO4 at 30‐60°C and to study the mechanism of action.

623

Abstract

Purpose

To investigate the effect of halide ions on the corrosion inhibition of mild steel using polyvinyl alcohol (PVA) in H2SO4 at 30‐60°C and to study the mechanism of action.

Design/methodology/approach

The corrosion rates were determined using the gravimetric (weight loss) and gasometric (hydrogen evolution) techniques. The results obtained in the absence and presence of PVA, halides, PVA – halides combination were used to calculate the inhibition efficiency (%I), degree of surface coverage and to propose the mechanism of inhibition and type of adsorption.

Findings

Results obtained showed that inhibition efficiency (%I) increased with the increase in concentration of PVA, on the addition of halides and with the increase in temperature. Phenomenon of chemical adsorption was proposed and PVA was found to obey Langmuir, Flory‐Huggins and Freundlich adsorption isotherms. The synergism parameter, S1, evaluated was found to be greater than unity and the values of Ea, ΔH°, ΔS° and ΔG° obtained revealed that the adsorption process was spontaneous.

Research limitations/implications

Electrochemical studies such as polarization and AC impedance spectra will enlighten more on the mechanistic aspects of the corrosion inhibition and more polymers need to be evaluated as corrosion inhibitors.

Practical implications

PVA can be used as corrosion inhibitor and the addition of halides to PVA improves the inhibition efficiency considerably.

Originality/value

This paper provides new information on the effects of halides on the corrosion inhibition using PVA as an inhibitor for mild steel in acidic medium. Such a study had not been reported elsewhere.

Details

Pigment & Resin Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 3 July 2007

O.K. Abiola, N.C. Oforka, E.E. Ebenso and N.M. Nwinuka

To investigate the inhibitive effect of Delonix regia extracts to reduce the corrosion rate of aluminium in acidic media. The study was a trial to find a low cost and…

1168

Abstract

Purpose

To investigate the inhibitive effect of Delonix regia extracts to reduce the corrosion rate of aluminium in acidic media. The study was a trial to find a low cost and environmentally safe inhibitor to reduce the corrosion rate of aluminium.

Design/methodology/approach

The inhibition efficiency was evaluated using the hydrogen evolution technique at 30°C. The mechanism of adsorption inhibition and type of adsorption isotherm was characterised from trends of inhibition efficiency and kinetic data.

Findings

Delonix regia extracts inhibited the corrosion of aluminium in hydrochloric acid solutions. The inhibition efficiency increased with increasing concentration of the inhibitor but decreased with increase in exposure time. The acid extracts (hydrochloric acid seeds extract (HSE) and hydrochloric acid leaf extract (HLE)) were found to be more effective than the ethanolic extracts (ethanol seeds extract (ASE) and ethanol leaves extract (ALE)) and the inhibition followed the order: HSE (93.6 per cent) > HLE (83.5 per cent) > ASE (63.9 per cent) > ALE (60.4 per cent). The low negative values of ΔGad: −20.14 kJ mol−1 for HSE, −18.08 kJ mol−1 for HLE, −15.96 kJ mol−1 for ASE and −15.12 kJ mol−1 for ALE, as calculated from the Langmuir isotherm, indicated that the inhibitor molecules adsorbed onto aluminium by a physiosorption‐based mechanism. A first‐order type of reaction mechanism was obtained from the kinetic treatment of the H2 gas evolution data.

Research limitations/implications

Further investigations involving electrochemical studies such as polarization method should shed further light on the mechanistic aspects of the corrosion inhibition.

Originality/value

This paper provides new information on the possible application of Delonix regia as an environmentally friendly corrosion inhibitor under the specified conditions. This environmentally friendly inhibitor could find possible applications in metal surface anodizing and surface coatings.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

116

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. 53 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 3 March 2025

Otmane Kharbouch, Khadija Dahmani, Saber Issam, Marouane El-Alouani, N. Errahamany, Mohamed Rbaa, Mouhsine Galai, Mohamed Ebntouhami, Rafa Almeer, Basheer M. Almaswari and Hakima Nassali

This study aims to synthesize two organic heterocyclic compounds, (2E,3E)-6-chloro-2,3-dihydrazinylidene-1-methyl-1,2,3,4-tetrahydroquinoxaline (MR1) and…

1

Abstract

Purpose

This study aims to synthesize two organic heterocyclic compounds, (2E,3E)-6-chloro-2,3-dihydrazinylidene-1-methyl-1,2,3,4-tetrahydroquinoxaline (MR1) and (2E,3E)-2,3-dihydrazinylidene-1-methyl-1,2,3,4-tetrahydroquinoxaline (MR2), characterize them using nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR) and evaluate their effectiveness as corrosion inhibitors in an acidic environment (15% HCl).

Design/methodology/approach

The synthesized compounds, MR1 and MR2, were tested for their corrosion inhibition properties using potentiodynamic polarization and electrochemical impedance spectroscopy. Post-corrosion, the steel surface was analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) to confirm the adsorption of the compounds. The experimental findings were further supported by density functional theory calculations and molecular dynamics simulations.

Findings

The results indicated that both MR1 and MR2 exhibit significant anticorrosive activity in a 15% HCl environment. The analyses performed with SEM, EDX and AFM confirmed the effective adsorption of the inhibitors on the steel surface, forming a protective layer. Theoretical studies provided additional insights into the adsorption mechanisms and stability of the inhibitors.

Originality/value

This work introduces novel organic heterocyclic compounds based on quinoxalinone as effective corrosion inhibitors in acidic environments. The combined experimental and theoretical approach provides a comprehensive understanding of their anticorrosive behavior.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 29 April 2014

Innocent Okechi Arukalam, Innocent Chimezie Madufor, Okoro Ogbobe and Emeka E. Oguzie

– The paper aims to investigate the effectiveness of hydroxypropyl methylcellulose (HPMC) as corrosion inhibitor for aluminium in 0.5 M H2SO4 solution.

285

Abstract

Purpose

The paper aims to investigate the effectiveness of hydroxypropyl methylcellulose (HPMC) as corrosion inhibitor for aluminium in 0.5 M H2SO4 solution.

Design/methodology/approach

This study was carried out using weight loss and electrochemical techniques. Inhibition efficiency was determined by comparing the corrosion rates in the absence and presence of inhibitor system. Quantum chemical computations were performed using density functional theory to assess the parameters responsible for the inhibition process and also to analyse the local reactivity of the molecule.

Findings

HPMC inhibited aluminium corrosion in the acidic environment. The inhibition efficiency was found to depend on concentration of the inhibitor. Impedance results reveal that HPMC is adsorbed on the corroding metal surface. Polarization results show that the dissolution reaction is due to destabilization of the passive oxide film on the Al surface. Adsorption of the inhibitor is approximated by Freundlich adsorption isotherm and the calculated standard free energy of adsorption indicates weak physical interaction between the inhibitor molecules and aluminium surface. This can be attributed to preferential interaction of the active sites with the passive oxide layer. The calculated quantum chemical parameters show good correlation with the inhibition efficiency.

Practical implications

HPMC could find possible application as a polymeric thickener and additive to improve corrosion resistance and barrier properties of anticorrosion paints.

Originality/value

This paper provides novel information on the inhibitive characteristics of HPMC under the stated conditions. The inhibitor systems provide an effective means for suppressing aluminium corrosion even in highly aggressive acidic environments.

Details

Pigment & Resin Technology, vol. 43 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 14 June 2023

Alexander I. Ikeuba, Christopher U. Sonde, Ifeatu E. Chukwudubem, Remigius C. Anozie, Benedict U. Ugi, Benedict Onyeachu, Okpo O. Ekerenam and Wilfred Emori

In line with current research efforts to develop eco-friendly strategies for corrosion mitigation, the purpose of this study is to appraise the anti-corrosion potential of…

151

Abstract

Purpose

In line with current research efforts to develop eco-friendly strategies for corrosion mitigation, the purpose of this study is to appraise the anti-corrosion potential of selected amino acids on magnesium corrosion in sodium chloride solutions.

Design/methodology/approach

The corrosion inhibition of magnesium in aqueous solutions in the presence of benign, eco-friendly and readily available amino acids (alanine, arginine, histidine, lysine, proline) were evaluated using electrochemical methods.

Findings

Amino acids suppressed magnesium corrosion rate in aqueous sodium chloride solutions. The order of inhibition efficiency (%IE) was as follows: alanine < arginine < histidine < lysine < proline. The open circuit potential shift with respect to the blank was less than 0.085 VSCE, indicating that the amino acids are mixed-type corrosion inhibitors. In addition, the %IE of the amino acids was inversely proportional to the molecular weight. The results obtained indicate that the amino acids can serve as sustainable eco-friendly corrosion inhibitors for magnesium with the best inhibition efficiency attributed to proline with an efficiency of 85.1%.

Originality/value

New information on the application of amino acids as green sustainable corrosion inhibitors is provided herein.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 15
Per page
102050