Giovanni Aiello, Salvatore Alfonzetti, Giuseppe Borzì, Emanuele Dilettoso and Nunzio Salerno
This paper aims to extend an efficient method to solve the global system of linear algebraic equations in the hybrid finite element method – boundary element method (FEM‐BEM…
Abstract
Purpose
This paper aims to extend an efficient method to solve the global system of linear algebraic equations in the hybrid finite element method – boundary element method (FEM‐BEM) solution of open‐boundary skin effect problems. The extension covers the cases in which the skin effect problem is set in a truncated domain in which no homogeneous Dirichlet conditions are imposed.
Design/methodology/approach
The extended method is based on use of the generalized minimal residual (GMRES) solver, which is applied virtually to the reduced system of equations in which the unknowns are the nodal values of the normal derivative of the magnetic vector potential on the fictitious truncation boundary. In each step of the GMRES algorithm the FEM equations are solved by means of the standard complex conjugate gradient solver, whereas the BEM equations are not solved but used to perform fast matrix‐by‐vector multiplications. The BEM equations are written in a non‐conventional way, by making the nodes for the potential non‐coinciding with the nodes for its normal derivative.
Findings
The paper shows that the method proposed is very competitive with respect to other methods to solve open‐boundary skin effect problems.
Originality/value
The paper illustrates a new method to solve efficiently skin effect problems in open boundary domains by means of the hybrid FEM‐BEM method.
Details
Keywords
Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…
Abstract
Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.