S. Jafari, M. Rahnama and E. Jahanshahi Javaran
– The present work aims to deal with simulation of turbulent duct flow using generalized lattice Boltzmann equation (GLBE) in which large eddy simulation was employed.
Abstract
Purpose
The present work aims to deal with simulation of turbulent duct flow using generalized lattice Boltzmann equation (GLBE) in which large eddy simulation was employed.
Design/methodology/approach
The sub-grid scale turbulence effects were simulated through a shear-improved Smagorinsky model (SISM) which is capable of predicting turbulent near wall region accurately without any wall function. Computations were done for fully developed turbulent square duct flow at Ret=300, based on duct width and average friction velocity.
Findings
Results obtained for turbulent duct flow reveal that the GLBE in conjunction with SISM is able to correctly predict the existence of secondary flows and the computed detailed structure of first- and second-order statistics of main and secondary motions. The methodology is validated by comparing with previously published data. It is concluded that such framework is capable of predicting accurate results for turbulent duct flow. In addition, the operations in the present method are local; it can be easily programmed for parallel machines.
Originality/value
The numerical method, including generalized lattice Boltzmann method with forcing term and implementation of SISM in GLBE, is used for the first time to simulate turbulent duct flow.
Details
Keywords
R. Askari, M.F. Ikram and S. H. Hejazi
Thermal conduction anisotropy, which is defined by the dependency of thermal conductivity on direction, is an important parameter in many engineering and research studies such as…
Abstract
Purpose
Thermal conduction anisotropy, which is defined by the dependency of thermal conductivity on direction, is an important parameter in many engineering and research studies such as the design of nuclear waste depositional sites. In this context, the authors aim to investigate the effect of grain shape in thermal conduction anisotropy using pore scale modeling that utilizes real shapes of grains, pores and throats to characterize petrophysical properties of a porous medium.
Design/methodology/approach
The authors generalize the swelling circle approach to generate porous media composed of randomly arranged but regularly oriented elliptical grains at various grain ratios and porosities. Unlike previous studies that use fitting parameters to capture the effect of grain–grain thermal contact resistance, the authors apply roughness to grains’ surface. The authors utilize Lattice Boltzmann method to solve steady state heat conduction through medium.
Findings
Based on the results, when the temperature field is not parallel to either major or minor axes of grains, the overall heat flux vector makes a “deviation angle” with the temperature field. Deviation angle increases by augmenting the ratio of thermal conductivities of solid to fluid and the aspect ratios of grains. In addition, the authors show that porosity and surface roughness can considerably change the anisotropic properties of a porous medium whose grains are elliptical in shape.
Originality/value
The authors developed an algorithm for generation of non-circular-based porous medium with a novel approach to include grain surface roughness. In previous studies, the effect of grain contacts has been simulated using fitting parameters, whereas in this work, the authors impose the roughness based on the its fractal geometry.
Details
Keywords
Noureddine Abouricha, Mustapha El Alami and Khalid Souhar
The purpose of this paper is to model the convective flows in a room equipped by a glass door and a heated floor of length l = 0.8 × H and submitted to a sinusoidal temperature…
Abstract
Purpose
The purpose of this paper is to model the convective flows in a room equipped by a glass door and a heated floor of length l = 0.8 × H and submitted to a sinusoidal temperature profile and mono alternative temperature profile.
Design/methodology/approach
The paper opts for a numerical study of convective flows in a large scale cavity using the Lattice Boltzmann Method (LBM) by considering a two dimensions (2D) square cavity of side H and filled by air (Pr = 0.71). All the vertical walls, the ceiling and the rest of the floor are thermally insulated, the hot portion of length l = 0.8×H is heated with two imposed temperature profiles of amplitude values 0.2 ≤ a ≤ 0.6 and for two different periods ζ = ζ0 and ζ = 0.4×ζ0. One of the vertical walls has a cold portion θc = 0 that represents the glass door.
Findings
A systematic study of the flow structure and heat transfer is carried out considering principal control parameters: amplitude “a” and period ζ for Rayleigh number Ra = 108. Effects of these parameters on results are presented in terms of isotherms, streamlines, profiles of velocities, temperature in the cavity, global and local Nusselt number. It has been found that an increase in amplitude or period increases the amplitude of the temperature in the core of cavity. The Nusselt number increases when the amplitude “a” of the imposed temperature increases, but this later is not affected by variation of the period.
Originality/value
The authors used LBM to simulate the convective flows in a cavity at high Ra, heated from below by tow imposed temperature profiles. Indeed, they simulate a local equipped by a solar water heater (SWH). The floor is subjected to a periodic heating: Sinusoidal heating (Case 1) for which the temperature varies sinusoidally (SWH without a supplement), and mono alternation heating (Case 2), the temperature evolves like a redressed signal (SWH with a supplement). The considered method has been successfully validated and compared with the previous work. The study has been conducted using several control parameters such as the signal amplitude and period in the case of turbulent convection. This allowed us to obtain a considerable set of results that can be used for engineering.