Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li
This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…
Abstract
Purpose
This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.
Design/methodology/approach
The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.
Findings
The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.
Originality/value
Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.
Details
Keywords
Mohammad Ghalambaz, Mahmoud Sabour, Ioan Pop and Dongsheng Wen
The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject…
Abstract
Purpose
The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject to a uniform inclined magnetic field and radiation effects. The effect of the presence of a variable magnetic field on the natural convection heat transfer of hybrid nanofluids in a complex shape cavity is studied for the first time. The geometry of the cavity is an annular space with an isothermal wavy outer cold wall. Two types of the porous medium, glass ball and aluminum metal foam, are adopted for the porous space. The governing equations for mass, momentum and heat transfer of the hybrid nanofluid are introduced and transformed into non-dimensional form. The actual available thermal conductivity and dynamic viscosity data for the hybrid nanofluid are directly used for thermophysical properties of the hybrid nanofluid.
Design/methodology/approach
The governing equations for mass, momentum and heat transfer of hybrid nanofluid are introduced and transformed into non-dimensional form. The thermal conductivity and dynamic viscosity of the nanofluid are directly used from the experimental results available in the literature. The finite element method is used to solve the governing equations. Grid check procedure and validations were performed.
Findings
The effect of Hartmann number, Rayleigh number, Darcy number, the shape of the cavity and the type of porous medium on the thermal performance of the cavity are studied. The outcomes show that using the composite nanoparticles boosts the convective heat transfer. However, the rise of the volume fraction of nanoparticles would reduce the overall enhancement. Considering a convective dominant regime of natural convection flow with Rayleigh number of 107, the maximum enhancement ratio (Nusselt number ratio compared to the pure fluid) for the case of glass ball is about 1.17 and for the case of aluminum metal foam is about 1.15 when the volume fraction of hybrid nanoparticles is minimum as 0.2 per cent.
Originality/value
The effect of the presence of a variable magnetic field on the natural convection heat transfer of a new type of hybrid nanofluids, MgO-MWCNTs/EG, in a complex shape cavity is studied for the first time. The results of this paper are new and original with many practical applications of hybrid nanofluids in the modern industry.
Details
Keywords
Štefan Bojnec, Imre Fertő and József Fogarasi
The purpose of this paper is to investigate the impacts of institutional quality (IQ) in exporting and importing countries on agro-food exports from the world's leading emerging…
Abstract
Purpose
The purpose of this paper is to investigate the impacts of institutional quality (IQ) in exporting and importing countries on agro-food exports from the world's leading emerging economies: Brazil, the Russian Federation, India and China (BRIC countries).
Design/methodology/approach
Measuring is based on using the gravity trade model and econometric panel data analysis for the period 1998-2009.
Findings
Agro-food exports from the BRIC countries, particularly Brazil and China, have increased. The Russian Federation has experienced stagnating and volatile patterns. Brazil and India have strengthened market shares in the existing importing markets, while the Russian Federation has experienced severe deterioration. The export of existing products is more important than of new products. Agro-food exports are positively associated with IQ and the size of the gross domestic product in exporting and importing countries, but negatively with distance.
Research limitations/implications
Among IQ variables, the focus is on the indices of legal structure and security of property rights and freedom to trade internationally in agro-food importing countries and the BRIC exporting countries.
Practical implications
Different institutions and their quality can affect agro-food exports differently. The impact of institutions is not uniform across product groups.
Originality/value
This paper adds the impacts of IQ on agro-food exports. Except for processed products for final household consumption, agro-food exports from the BRIC countries are positively associated with the quality of the legal structure, the security of property rights and the freedom to trade internationally as IQ in exporting and importing countries.
Details
Keywords
Yilun Wang, Xiaofen Ji, Chen Pang and Lina Zhai
Esthetic trend changes with the development of society and cultural differences. A minimizer bra designed to make breasts appear smaller is now popular with large-breasted women…
Abstract
Purpose
Esthetic trend changes with the development of society and cultural differences. A minimizer bra designed to make breasts appear smaller is now popular with large-breasted women in China. To conform to the requirements of modern aesthetics in China, this paper aims to investigate vital features of breast appearance that influence people’s subjective evaluation of breast size and analyze how bra design parameters affect breast shape and make breasts appear smaller.
Design/methodology/approach
This study used 3D scanning technology and reverse engineering software to obtain objective breast measurements in detail. A subjective evaluation experiment was conducted to evaluate the overall performance of seven minimizer bras compared to a basic comparison bra. Around 20 design parameters of 8 sample bras were identified to make a further study about the correlation between bra design features and breast shaping effect. To gain a deeper understanding of how bras interact with breast tissue, this study presented heat maps of the breast surface to visualize the deformation of breast shape.
Findings
Nine breasts' characteristics, such as the distance between bust points, breast depth, outer breast curvature and slope, etc. have been determined to be highly correlated with the visual reduction effect of breasts. In addition, for the bras in this experiment, the high-performance bra for women with large breasts tends to have a wider side panel, a wider under band, higher gore and a stronger transverse rigidity of the bra cup. According to the observation of heat maps of the breast surface, soft full-figure bras provide a wider range of compression to the breasts and effectively flatten the breasts.
Originality/value
This paper first aimed at the need to shape the ideal breast appearance for large-breasted women and make a further study of several hot-selling minimizer bras in China. The suggestions given in this paper help lingerie manufacturers better understand how design features of bras can affect their shaping effect and improve the wearing effect of minimizer bras for large-breasted women.
Details
Keywords
Junzhou Yang, Jianjun Wu, Qianwen Zhang, Yinxiang Ren, Han Ruolan and Kaiwei Wang
With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.
Abstract
Purpose
With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.
Design/methodology/approach
A modified constitutive model based on the hyperbolic sine Arrhenius equation has been established, which is applied to describe the flow behavior of Ti-6Al-4V alloy during the superplastic forming (SPF).
Findings
The modified constitutive model in this work has a good ability to describe the flow behavior for Ti-6Al-4V in SPF. Besides, a deformation map of titanium material is obtained based on the parameters. As the supplement, finite element models of high-temperature tensile tests are carried out as the application of the constitutive model.
Originality/value
The relationship between constitutive model parameters and forming mechanism is established, which is a new angle in rheological behavior research and constitutive model analysis.