Search results

1 – 3 of 3
Article
Publication date: 2 November 2015

Jian-Xin Shen, Dong-Min Miao and Mengjia Jin

The purpose of this paper is to focus on various control strategies for permanent magnet synchronous generator (PMSG) systems, in order to stabilize the dc link output voltage…

Abstract

Purpose

The purpose of this paper is to focus on various control strategies for permanent magnet synchronous generator (PMSG) systems, in order to stabilize the dc link output voltage over a wide operation speed range.

Design/methodology/approach

Two control methods, namely, the flux regulation control (FRC) which adjusts the stator flux linkage and then indirectly stabilize the dc link voltage, and the direct voltage control (DVC) which directly stabilize the dc link voltage by regulating the power angle, are proposed in this paper. Both methods can be realized by either approach of the conventional space vector pulse width modulation (SVPWM) or the proposed single voltage vector modulation (SVVM).

Findings

The FRC can optimize the field in the PMSG, however, the realization is complicated. The DVC need not estimate and regulate the stator flux linkage, hence is easy to implement. On the other hand, the SVPWM can provide smooth armature current and dc link voltage, while the SVVM applies only one voltage vector during each control cycle, hence, is simple to realize and requires the minimum switching on the PWM rectifier. All cross-combinations between the two control methods and the two realization approaches work well.

Originality/value

The proposed FRC and DVC methods are simpler than the conventional field oriented control, while the proposed SVVM is a novel and efficient approach to generate the PWM status. Optimal cross-combination, either of SVPWM-FRC, SVVM-FRC, SVPWM-DVC and SVVM-DVC, can be chosen to satisfy the system characters and requirements.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Jianxin Shen and Dong-Min Miao

The purpose of this paper is to focus on the machine design and control strategy of the permanent magnet synchronous generator (PMSG) system, especially utilized in variable speed…

Abstract

Purpose

The purpose of this paper is to focus on the machine design and control strategy of the permanent magnet synchronous generator (PMSG) system, especially utilized in variable speed applications, in order to stabilize the output voltage on the dc link over a wide speed range.

Design/methodology/approach

Different ac/dc power converter topologies are comparatively studied, each with an accordingly designed PMSG, so as to investigate the influence of the armature winding inductance as well as the relationship between the PMSG and power converter topologies.

Findings

Pulse width modulation (PWM) rectifier is preferable for the said application due to its good performance and controllability. Moreover, by employing the PWM rectifier, relatively large inductance of the PMSG is considered for both short-circuit current reduction and field regulation.

Originality/value

Field-regulating control is realized with a space vector PWM (SVPWM) rectifier, which can weaken the PMSG magnetic field during high-speed operation, while even properly enhance the field at low speed, ensuring a small change of the PMSG output voltage and a stable dc voltage.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Dong-Min Miao, Shuai Wang and Jian-Xin Shen

The purpose of this paper is to study a woodworking machine, in which a linear induction motor (LIM) is applied to feed the wood to be processed into the cutting saw. The LIM is…

190

Abstract

Purpose

The purpose of this paper is to study a woodworking machine, in which a linear induction motor (LIM) is applied to feed the wood to be processed into the cutting saw. The LIM is optimally designed and the whole drive system is controlled by a programmable logic controller (PLC) to meet the industrial demands.

Design/methodology/approach

Since the operation range is short, the LIM mainly works at the transient state of quick start and quick brake. Hence, the thrust force with a large slip ratio (hereafter called the starting thrust) is one of the most important issues in the LIM design. Finite element method is used to optimize the starting thrust while taking a specific variable voltage variable frequency (VVVF) drive into account.

Findings

The LIM system directly drives the machine workbench where the wood is placed, eliminating the requirement of manpower to push the wood through the cutting saw, hence, greatly reduces the operation hazard. It has a higher reliability and longer service life than the conventional drive system employing a rotary motor with a ball screw mechanism.

Originality/value

The LIM is an attractive candidate for the woodworking machine application, which can replace the complicated and relatively low-efficiency mechanism of rotary motor and ball screw. High starting thrust can be achieved by optimizing the LIM design, whilst the specific VVVF control is essential to ensure a good drive performance. The PLC is competent for both human-machine interface (HMI) and control of the inverter-fed LIM system, and is of high reliability in industrial environment.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3