Kostadin Brandisky, Dominik Sankowski, Robert Banasiak and Ivaylo Dolapchiev
The purpose of this paper is to consider the optimization of an 8‐electrode cylindrical electrical capacitance tomography (ECT) sensor. The aim is to obtain maximum uniformity and…
Abstract
Purpose
The purpose of this paper is to consider the optimization of an 8‐electrode cylindrical electrical capacitance tomography (ECT) sensor. The aim is to obtain maximum uniformity and value of the sensitivity distribution of the sensor, while keeping the mutual capacitances between the electrodes above a predefined level.
Design/methodology/approach
The optimization methods that have been used are response surface methodology, genetic algorithm and a combination of both.
Findings
As results, optimum dimensions for the gap, mounting pipe, shield and insulation are determined, which ensure more uniform distribution of sensitivity in the sensing area.
Originality/value
The optimization strategies used – RSM and the combined RSM+GA – make the optimization of ECT sensors feasible. The results show the effectiveness of the RSM+GA strategy which could also be used for optimization of 3D multilayer ECT sensors.
Details
Keywords
Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…
Abstract
Purpose
Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.
Design/methodology/approach
To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.
Findings
It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.
Originality/value
The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.