John D. Kechagias, Dimitrios Chaidas and Tatjana Spahiu
New sustainable approaches to fashion products are needed due to the demand for customization, better quality and cost reduction. Therefore, the decoration of fashion products…
Abstract
Purpose
New sustainable approaches to fashion products are needed due to the demand for customization, better quality and cost reduction. Therefore, the decoration of fashion products using 3D printing technology can create a new direction for manufacturing science.
Design/methodology/approach
This study aims to optimize the 3D printing of soft TPU material on textiles. In the past decade, trials of using 3D printing in tailored fashion products have been done due to the 3D printing simplicity, low cost of materials and time reduction. Therefore, soft polymers can be multi-layer stepped-deposited smoothly with the fused filament fabrication process.
Findings
Even though there have been many attempts in the literature to 3D print multilayer polymer filaments directly onto textile fabrics by special-purpose 3D printers, only a few reports of decorative or personalized artefact 3D printing using open-platform filament material extrusion 3D printers. Printing speed, nozzle Z distance, textile fabric thickness and deposited strand height significantly affect 3D printing on textile fabric.
Originality/value
This study investigates the potential of 3D printing on textiles by changing the printing speed, nozzle hot end, Z distance and layer thickness. It presents two critical case studies of 3D printing soft thermoplastic polyurethane material on a cotton T-shirt and on a tulle textile to reveal the 3D printing on textile fabrics manufacturing challenges.
Details
Keywords
Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani
The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…
Abstract
Purpose
The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.
Design/methodology/approach
Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.
Findings
The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.
Originality/value
The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.