Search results
1 – 1 of 1Markus Knobloch, Diego Somaini, Jacqueline Pauli and Mario Fontana
The cross-sectional capacity of steel sections subjected to fire is strongly affected by the decreasing stiffness during heating and the nonlinear stress-strain relationship of…
Abstract
The cross-sectional capacity of steel sections subjected to fire is strongly affected by the decreasing stiffness during heating and the nonlinear stress-strain relationship of steel at elevated temperatures. This paper analyses the cross-sectional capacity of common steel sections subjected to combined axial compression and biaxial bending moments at both ambient and elevated temperatures considering section yielding and local buckling effects. The results of a parametric study using the finite element approach are presented as temperature-dependent normalized N-M interaction curves and are compared to results using elastic and plastic interaction formulae. A comparative study shows that European fire design models may lead to conservative results for semi-compact and slender cross sections (class 3 and 4 sections) due to the partial plastic capacity of these sections. However, for steel members predominately subjected to axial compression the design models may lead to unconservative results due to local buckling deflections that occur even for plastic and compact sections (class 1 and 2).
Details