Sajan Kapil, Prathamesh Joshi, Hari Vithasth Yagani, Dhirendra Rana, Pravin Milind Kulkarni, Ranjeet Kumar and K.P. Karunakaran
In additive manufacturing (AM) process, the physical properties of the products made by fractal toolpaths are better as compared to those made by conventional toolpaths. Also, it…
Abstract
Purpose
In additive manufacturing (AM) process, the physical properties of the products made by fractal toolpaths are better as compared to those made by conventional toolpaths. Also, it is desirable to minimize the number of tool retractions. The purpose of this study is to describe three different methods to generate fractal-based computer numerical control (CNC) toolpath for area filling of a closed curve with minimum or zero tool retractions.
Design/methodology/approach
This work describes three different methods to generate fractal-based CNC toolpath for area filling of a closed curve with minimum or zero tool retractions. In the first method, a large fractal square is placed over the outer boundary and then rest of the unwanted curve is trimmed out. To reduce the number of retractions, ends of the trimmed toolpath are connected in such a way that overlapping within the existing toolpath is avoided. In the second method, the trimming of the fractal is similar to the first method but the ends of trimmed toolpath are connected such that the overlapping is found at the boundaries only. The toolpath in the third method is a combination of fractal and zigzag curves. This toolpath is capable of filling a given connected area in a single pass without any tool retraction and toolpath overlap within a tolerance value equal to stepover of the toolpath.
Findings
The generated toolpath has several applications in AM and constant Z-height surface finishing. Experiments have been performed to verify the toolpath by depositing material by hybrid layered manufacturing process.
Research limitations/implications
Third toolpath method is suitable for the hybrid layered manufacturing process only because the toolpath overlapping tolerance may not be enough for other AM processes.
Originality/value
Development of a CNC toolpath for AM specifically hybrid layered manufacturing which can completely fill any arbitrary connected area in single pass while maintaining a constant stepover.
Details
Keywords
Ashish Dwivedi, Ajay Jha, Dhirendra Prajapati, Nenavath Sreenu and Saurabh Pratap
Due to unceasing declination in environment, sustainable agro-food supply chains have become a topic of concern to business, government organizations and customers. The purpose of…
Abstract
Purpose
Due to unceasing declination in environment, sustainable agro-food supply chains have become a topic of concern to business, government organizations and customers. The purpose of this study is to examine a problem associated with sustainable network design in context of Indian agro-food grain supply chain.
Design/methodology/approach
A mixed integer nonlinear programming (MINLP) model is suggested to apprehend the major complications related with two-echelon food grain supply chain along with sustainability aspects (carbon emissions). Genetic algorithm (GA) and quantum-based genetic algorithm (Q-GA), two meta-heuristic algorithms and LINGO 18 (traditional approach) are employed to establish the vehicle allocation and selection of orders set.
Findings
The model minimizes the total transportation cost and carbon emission tax in gathering food grains from farmers to the hubs and later to the selected demand points (warehouses). The simulated data are adopted to test and validate the suggested model. The computational experiments concede that the performance of LINGO is superior than meta-heuristic algorithms (GA and Q-GA) in terms of solution obtained, but there is trade-off with respect to computational time.
Research limitations/implications
In literature, inadequate study has been perceived on defining environmental sustainable issues connected with agro-food supply chain from farmer to final distribution centers. A MINLP model has been formulated as practical scenario for central part of India that captures all the major complexities to make the system more efficient. This study is regulated to agro-food Indian industries.
Originality/value
The suggested network design problem is an innovative approach to design distribution systems from farmers to the hubs and later to the selected warehouses. This study considerably assists the organizations to design their distribution network more efficiently.