Mallika Datta, Devarun Nath, Asif Javed and Nabab Hossain
The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s formal…
Abstract
Purpose
The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s formal shirt. Maximum seam efficiency and interaction between the process parameters were assessed.
Design/methodology/approach
The classical method of optimisation involves varying one variable at a time and keeping the others constant. This is often useful, but it does not explain the effect of interaction between the variables under consideration. In this study, the response surface methodology was used for securing a more accurate optimisation of seam quality (seam efficiency) of woven linen shirting fabric. The response surface method is an empirical statistical technique used for multiple regression analysis of quantitative data obtained from statistically designed experiments by solving the multivariate equations simultaneously. Through this system, the input level of each process parameter, i.e. variable and the level of the selected response (seam efficiency), can be quantified. The central composite, Box–Behnken, is the common design used here.
Findings
The maximum seam efficiency is 79.62 per cent and 83.13 per cent in warp and weft direction, respectively, with optimum areal density (G) of 110 g/m2 of woven linen shirting fabric. The most suitable stitch density and ticket number of commercial grade sewing thread for woven linen shirting fabric are 13-13.5 and 40, respectively.
Practical implications
This study could help apparel manufacturers to evaluate seam quality, i.e. seam efficiency of woven linen fabric for men’s shirting, more effectively from the proposed regression model. The optimisation of the commercial grade sewing thread size and stitch density used in this study for woven linen shirting fabric within the range of 110-150 g/m2 will facilitate apparel engineers in production planning and quality control.
Originality/value
There is dearth of research on seam quality for woven linen shirting fabric using commercial grade sewing thread and engineering of prediction regression model for the estimation of seam efficiency by using process parameters, namely, fabric G, thread size and thread density and their interaction.
Details
Keywords
Mallika Datta, Debasish Das and Devarun Nath
The study aims to review the literatures on the effect of fiber length on the mechanical response of natural fiber composite will help the researchers to know about the…
Abstract
Purpose
The study aims to review the literatures on the effect of fiber length on the mechanical response of natural fiber composite will help the researchers to know about the perspective of the various natural fibers in making of composite concerning fiber length. The review summarized the work of the other researchers, thereby unambiguously précised suitability of a specific natural fiber for a matrix in use. Thus, one can identify the use of the same fibers–matrix combination to obtain composites with different properties with the control of fiber/matrix interface.
Design/methodology/approach
The review work proposes a new kind of diagrammatic representation that expresses the influence of fiber length. This work has not been explored before in this specific format. The chronology of work may help to select natural fibers for use in composites for a specific matrix.
Findings
The length of the fiber perception in terms of “critical” length decides the need for pre-treatment process of natural fiber to improve shear stress at the interface for various matrices.
Originality/value
The current review paper attempts to shed light on the association between the fiber length of natural fiber and the mechanical response of natural fiber composite. Moreover, it probes the concepts of critical fiber length as a persuadable factor.