Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 18 April 2017

Hongxiang Tang, Yuhui Guan, Xue Zhang and Degao Zou

This paper aims to develop a finite element analysis strategy, which is suitable for the analysis of progressive failure that occurs in pressure-dependent materials in practical…

264

Abstract

Purpose

This paper aims to develop a finite element analysis strategy, which is suitable for the analysis of progressive failure that occurs in pressure-dependent materials in practical engineering problems.

Design/methodology/approach

The numerical difficulties stemming from the strain-softening behaviour of the frictional material, which is represented by a non-associated Drucker–Prager material model, is tackled using the Cosserat continuum theory, while the mixed finite element formulation based on Hu–Washizu variational principle is adopted to allow the utilization of low-order finite elements.

Findings

The effectiveness and robustness of the low-order finite element are verified, and the simulation for a real-world landslide which occurred at the upstream side of Carsington embankment in Derbyshire reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved.

Originality/value

The permit of using low-order finite elements is of great importance to enhance computational efficiency for analysing large-scale engineering problems. The case study reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

438

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2
Per page
102050