Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 11 July 2019

Yuan Zhuang and Decheng Wan

The purpose of this paper is to verify the ability of our in-house solver naoe-FOAM-SJTU to solve the problem of exterior fluid field coupled with interior fluid field and…

186

Abstract

Purpose

The purpose of this paper is to verify the ability of our in-house solver naoe-FOAM-SJTU to solve the problem of exterior fluid field coupled with interior fluid field and discover the coupling effects between exterior field (ship motion) and interior field (sloshing tanks).

Design/methodology/approach

The solving equation is based on Navier–Stokes equation, by comparing two turbulence models [laminar model and Reynolds-averaged Navier–Stocks (RANS)], of which RANS model are chosen to do the simulation. A unified approach is adopted to simulate exterior and interior fields simultaneously, keeping the pressure and velocity the same in external and internal fields. By adding a new function of calculating forces on different patches, the inner sloshing moments and external wave exciting moments can be output.

Findings

The in-house solver naoe-FOAM-SJTU had the ability to simulate this problem and showed well agreement with experimental results. By considering ship motion with and without sloshing, it was figured that with the existence of sloshing tank, the ship natural frequency will be changed. When the two tank fillings are the same, there will be another roll peak appeared, which is natural frequency of sloshing tanks. Considering wave height and different filling influence, the nonlinearity of sloshing in tank may give non-proportional response to ship motion.

Practical implications

With the ability to simulate well, the reality reference in the progress of FPSO or FLNG operation is obtained.

Originality/value

The value of this paper is a fully coupled CFD method which is adopted to solve the coupling effects, showing the ability to do the work well. It gives a referenced detailed information of inner and outer fluid field. Meanwhile, it carried out the impact pressure and damping force around the ship, which indicates the practical information in operations.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 15 June 2015

Zhenyuan Tang and Decheng Wan

The jet impingement usually accompanying large interface movement is studied by the in-house solver MLParticle-SJTU based on the modified moving particle semi-implicit (MPS…

459

Abstract

Purpose

The jet impingement usually accompanying large interface movement is studied by the in-house solver MLParticle-SJTU based on the modified moving particle semi-implicit (MPS) method, which can provide more accurate pressure fields and deformed interface shape. The comparisons of the pressure distribution and the shape of free surface between the presented numerical results and the analytical solution are investigated. The paper aims to discuss these issues.

Design/methodology/approach

To avoid the instability in traditional MPS, a modified MPS method is employed, which include mixed source term for Poisson pressure equation (PPE), kernel function without singularity, momentum conservative gradient model and highly precise free surface detection approach. Detailed analysis on improved schemes in the modified MPS is carried out. In particular, three kinds of source term in PPE are considered, including: particle number density (PND) method, mixed source term method and divergence-free method. Two typical kernel functions containing original kernel function with singularity and modified kernel function without singularity are analyzed. Three kinds of pressure gradient are considered: original pressure gradient (OPG), conservative pressure gradient (CPG) and modified pressure gradient (MPG). In addition, particle convergence is performed by running the simulation with various spatial resolutions. Finally, the comparison of the pressure fields by the modified MPS and by SPH is presented.

Findings

The modified MPS method can provide a reliable pressure distribution and the shape of the free surface compared to the analytical solution in a steady state after the water jet impinging on the wall. Specifically, mixed source term in PPE can give a reasonable profile of the shape of free surface and pressure distribution, while PND method adopted in the traditional MPS is not stable in simulation, and divergence-free method cannot produce rational pressure field near the wall. Two kernel functions show similar pressure field, however, the kernel function without singularity is preferred in this case to predict the profile of free surface and pressure on the wall. The shape of free surface by CPG and MPG is agreement with the analytical solution, while a great discrepancy can be observed by OPG. The pressure peak by MPG is closer to the analytical solution than that by CPG, while the pressure distribution on the right hand side of the pressure peak by latter is better match with the analytical solution than that by former. Besides, fine spatial resolution is necessary to achieve a good agreement with analytical results. In addition, the pressure field by the modified MPS is also quite similar to that by SPH, and this can further validate the reliable of current modified MPS.

Originality/value

The present modified MPS appears to be a stable and reliable tool to deal with the impinging jet flow problems involving large interface movement. Mixed source term in PPE is superior to PND adopted in the traditional MPS and divergence-free method. The kernel function without singularity is preferred to improve the computational accuracy in this case. CPG is a good choice to obtain the shape of free surface and the pressure distribution by jet impingement.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Available. Open Access. Open Access
Article
Publication date: 17 October 2018

Decheng Li, Tiannian Zhou, Zegong Liu and Jian Wang

The purpose of this study is to investigate the transport phenomena of smoke flow in a semi-open vertical shaft.

1125

Abstract

Purpose

The purpose of this study is to investigate the transport phenomena of smoke flow in a semi-open vertical shaft.

Design/methodology/approach

The large eddy simulation (LES) method was used to model the movement of fire-induced thermal flow in a full-scale vertical shaft. With this model, different fire locations and heat release rates (HRRs) were considered simultaneously.

Findings

It was determined that the burning intensity of the fire is enhanced when the fire attaches to the sidewall, resulting in a larger continuous flame region in the compartment and higher temperatures of the spill plume in the shaft compared to a center fire. In the initial stage of the fire with a small HRR, the buoyancy-driven spill plumes incline toward the side of the shaft opposite the window. Meanwhile, the thermal plumes are also directed away from the center of the shaft by the entrained airflow, but the inclination diminishes as HRR increases. This is because a greater HRR produces higher temperatures, resulting in a stronger buoyancy to drive smoke movement evenly in the shaft. In addition, a dimensionless equation was proposed to predict the rise-time of the smoke plume front in the shaft.

Research limitations/implications

The results need to be verified with experiments.

Practical implications

The results could be applied for design and assessment of semi-open shafts.

Originality/value

This study shows the transport phenomena of smoke flow in a vertical shaft with one open side.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 14 August 2018

Chunhui Kang, Decheng Kong, JiZheng Yao, Chunyun Guo, Li Wang, K. Xiao and C.F. Dong

This paper aims to investigate the corrosion behavior of zinc in a typical hot and dry atmosphere. It proposes the dynamic corrosion for different exposure periods. Results can…

153

Abstract

Purpose

This paper aims to investigate the corrosion behavior of zinc in a typical hot and dry atmosphere. It proposes the dynamic corrosion for different exposure periods. Results can provide the basic data and corrosion mechanism of zinc in such environment.

Design/methodology/approach

In this paper, the authors investigated the corrosion behavior of pure zinc exposed in the typical hot and dry environment in Turpan for one-four years, which has never been studied. Scanning electron microscopy, laser scanning confocal microscopy, electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were conducted to measure the corrosion morphology and products of zinc. Finally, combining electrochemical impedance spectroscopy and scanning Kelvin probe techniques, the corrosion mechanism of zinc in Turpan was examined.

Findings

The thickness loss of the zinc followed an exponential law with respect to exposure time: D = 3.17 t0.61, and both of the rust layer resistance and the charge transfer resistance increased with exposure time. The corrosion products mainly comprised ZnO, Zn(OH)2, Zn5(CO3)2(OH)6, Zn4SO4(OH)6·5H2O and Zn12(SO4)3Cl3(OH)15·5H2O. The Kelvin potentials shifted toward the positive direction from −0.380 to −0.262 V (vs saturated calomel electrode [SCE]) when the exposure time extended from one to four years and the distribution of the corrosion products became more and more uniform.

Originality/value

The corrosion behavior of pure zinc in the typical hot and dry environment in Turpan has not been studied. The dynamic corrosion for different exposure periods was obtained. The corrosion products were systemically investigated via energy-dispersive X-ray spectroscopy, EPMA, XPS and XRD.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 29 May 2023

Lingyun Cao, Shuaibin Ren, ZhengHao Zhou, Xuening Fei and Changliang Huang

This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding…

54

Abstract

Purpose

This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding performance under sunlight and infrared irradiation.

Design/methodology/approach

With the help of anionic and cationic polyelectrolytes, the PGT composite pigment was prepared using a layer-by-layer assembly method under wet ball milling. Based on the light reflectance properties and color performance tested by ultraviolet-visible-NIR spectrophotometer and colorimeter, the preparation conditions were optimized and the properties of PGT pigment with different assembly layers (PGT-1, PGT-3, PGT-5 and PGT-7) were compared. In addition, their heat-shielding performance was evaluated and compared by temperature rise value for their coating under sunlight and infrared irradiation.

Findings

The PGT pigment had a core/shell structure, and the PG thickness increased with the self-assembly layers, which made the PGT-3 and PGT-7 pigment show higher color purity and saturation than PGT-1 pigment. In addition, the PGT-3 and PGT-7 pigment showed 11%–16% lower light reflectance in the visible region. However, their light reflectance in the NIR region was similar. Under infrared irradiation the PGT-5 and PGT-7 pigment coating showed 1.1°C–3.4°C and 1.3°C–4.7°C lower temperature rise value than PGT-1 pigment coating and physical mixture pigment coating, respectively. And under sunlight the PGT-3 pigment coating showed 1.5–2.6°C lower temperature rise value than the physical mixture pigment coating.

Originality/value

The layer-by-layer assembling makes the core/shell PGT composite pigment possess low visible light reflectance, high NIR reflectance and good heat-shielding performance.

Details

Pigment & Resin Technology, vol. 53 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 5 of 5
Per page
102050