Maryam Mohseni and Davood Rostamy
The numerical methods are of great importance for approximating the solutions of a system of nonlinear singular ordinary differential equations. In this paper, the authors present…
Abstract
Purpose
The numerical methods are of great importance for approximating the solutions of a system of nonlinear singular ordinary differential equations. In this paper, the authors present the biorthogonal flatlet multiwavelet collocation method (BFMCM) as a numerical scheme for a class of system of Lane–Emden equations with initial or boundary or four-point boundary conditions.
Design/methodology/approach
The approach is involved in combining the biorthogonal flatlet multiwavelet (BFM) with the collocation method. The authors investigate the properties and procedure of the BFMCM for first time on this class of equations. By using the BFM and the collocation points, the method is constructed and it transforms the nonlinear differential equations problem into a system of nonlinear algebraic equations. The unknown coefficients of the assuming solution are determined by solving the obtained system. Additionally, convergence analysis and numerical stability of the suggested method are provided.
Findings
According to the attained results, the proposed BFMCM has more accurate results in comparison with results of other methods. The maximum absolute errors are calculated by using the BFMCM for comparison purposes provided.
Originality/value
The key desirable properties of BFMCM are its efficiency, simple applicability and minimizes errors. Therefore, the proposed method can be used to solve nonlinear problems or problems with singular points.
Details
Keywords
Davood Rostamy and Kobra Karimi
The purpose of this paper is to introduce a novel approach based on the high-order matrix derivative of the Bernstein basis and collocation method and its employment to solve an…
Abstract
Purpose
The purpose of this paper is to introduce a novel approach based on the high-order matrix derivative of the Bernstein basis and collocation method and its employment to solve an interesting and ill-posed model in the heat conduction problems, homogeneous backward heat conduction problem (BHCP).
Design/methodology/approach
By using the properties of the Bernstein polynomials the problems are reduced to an ill-conditioned linear system of equations. To overcome the unstability of the standard methods for solving the system of equations an efficient technique based on the Tikhonov regularization technique with GCV function method is used for solving the ill-condition system.
Findings
The presented numerical results through table and figures demonstrate the validity and applicability and accuracy of the technique.
Originality/value
A novel method based on the high-order matrix derivative of the Bernstein basis and collocation method is developed and well-used to obtain the numerical solutions of an interesting and ill-posed model in heat conduction problems, homogeneous BHCP with high accuracy.