Austin R. Colon, David Owen Kazmer, Amy M. Peterson and Jonathan E. Seppala
A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer…
Abstract
Purpose
A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented.
Design/methodology/approach
Infrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature.
Findings
The experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle.
Originality/value
This work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.
Details
Keywords
Timothy J. Coogan and David Owen Kazmer
The purpose of this paper is to investigate the factors governing bond strength in fused deposition modeling (FDM) compared to strength in the fiber direction.
Abstract
Purpose
The purpose of this paper is to investigate the factors governing bond strength in fused deposition modeling (FDM) compared to strength in the fiber direction.
Design/methodology/approach
Acrylonitrile butadiene styrene (ABS) boxes with the thickness of a single fiber were made at different platform and nozzle temperatures, print speeds, fiber widths and layer heights to produce multiple specimens for measuring the strength.
Findings
Specimens produced with the fibers oriented in the tensile direction had 95 per cent of the strength of the constitutive filament. Bond strengths ranged from 40 to 85 per cent of the filament strength dependent on the FDM processing conditions. Diffusion, wetting and intimate contact all separately affect bond strength.
Practical implications
This study provides processing recommendations for producing the strongest FDM parts. The needs for higher nozzle temperatures and more robust feed motors are described; these recommendations can be useful for companies producing FDM products as well as companies designing FDM printers.
Originality/value
This is the first study that discusses wetting and intimate contact separately in FDM, and the results suggest that a fundamental, non-empirical model for predicting FDM bond strength can be developed based on healing models. Additionally, the role of equilibration time at the start of extrusion as well as a motor torque limitation while trying to print at high speeds are described.