Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 July 2013

Tara L. Cavalline and David C. Weggel

Reuse of construction and demolition (C&D) waste as aggregates is becoming increasingly popular for a number of environmental and economic reasons. The purpose of this paper is to…

2063

Abstract

Purpose

Reuse of construction and demolition (C&D) waste as aggregates is becoming increasingly popular for a number of environmental and economic reasons. The purpose of this paper is to explore this topic.

Design/methodology/approach

In this study, structural‐ and pavement‐grade portland cement concrete (PCC) mixtures were developed using crushed recycled brick masonry from a demolition site as a replacement for conventional coarse aggregate. Prior to developing concrete mixtures, testing was performed to determine properties of whole clay brick and tile, as well as the crushed recycled brick masonry aggregate (RBMA), and a database of material properties was developed.

Findings

Concrete mixtures exhibiting acceptable workability and other fresh concrete properties were obtained, and tests were performed to assess mechanical properties and durability performance of the hardened concrete. Results indicated that recycled brick masonry aggregate concrete (RBMAC) mixtures can exhibit mechanical properties comparable to that of structural‐ and pavement‐grade PCC containing conventional coarse aggregates.

Research limitations/implications

Results for durability performance were mixed, but additional testing to evaluate durability performance is recommended.

Practical implications

Although RBMAC has been untested in field applications, results of laboratory studies performed to date indicate that this material shows promise for use in pavement and structural applications. Future testing of RBMAC in both laboratory and field settings will allow stakeholders to gain a comfort level with its properties, identify specific potential uses, and establish guidelines that will assist in ensuring acceptable service life performance.

Originality/value

From the standpoint of sustainability, use of recycled materials as aggregates provides several advantages. Landfill space used for disposal is decreased, and existing natural aggregate sources are not as quickly depleted. Use of recycled aggregates in lieu of virgin quarried aggregates can potentially result in a lower embodied energy of the concrete, although this is often dependent on hauling costs. This particularly holds true if the methodology used to compute the embodied energy of a structure accounts for the “recovery” of energy at the end of its service life.

Access Restricted. View access options
Book part
Publication date: 31 December 2010

Tran Phong and Rajib Shaw

As a consequence of the huge loss and damage caused by natural disasters all over the world, an impressive amount of attention is currently being given to a holistic approach in…

Abstract

As a consequence of the huge loss and damage caused by natural disasters all over the world, an impressive amount of attention is currently being given to a holistic approach in disaster risk management (McEntire, Fuller, Johnston, & Weber, 2002). The world experiences more and more natural disaster impacts in spite of numerous efforts, advancing sciences, and more powerful technologies. Indeed, current disasters are more complex, and climate change poses a greater potential for adverse impacts (Aalst & Burton 2002). Hence, there is a need to reassess the existing disaster risk reduction approaches due to problems in the existing risk management approaches, and new risks brought by climate change and by environment degradation.

Details

Climate Change Adaptation and Disaster Risk Reduction: Issues and Challenges
Type: Book
ISBN: 978-0-85724-487-1

1 – 2 of 2
Per page
102050