Daniel Sanz‐Merodio, Manuel Cestari, Juan Carlos Arevalo and Elena Garcia
Lower‐limb exoskeletons and powered orthoses are external devices that assist patients with locomotive disorders to achieve correct limb movements. Current batteries cannot meet…
Abstract
Purpose
Lower‐limb exoskeletons and powered orthoses are external devices that assist patients with locomotive disorders to achieve correct limb movements. Current batteries cannot meet the long‐term power requirements for these devices, which operate for long periods of time. This issue has become a major challenge in the development of these portable robots. Conversely, legged locomotion in animals and humans is efficient; to emulate this behaviour, biomimetic actuation has been designed attempting to incorporate elements that resemble biological elements, such as tendons and muscles, in the mechanical systems. The purpose of this paper is to present a mechanism that resembles a human tendon to achieve and utilise the synergic actuation of the leg joints.
Design/methodology/approach
In this paper, we present a mechanism that resembles a human tendon to move the ankle joint and utilise the synergic actuation of hip and knee joints. Implementation of the proposed transmission system in the ATLAS active orthosis prototype allowed for a better ankle gait fit, which resulted in a more natural stride and, as expected, optimised energy consumption in the locomotion cycle and actuation energy requirements.
Findings
The fitted passive ankle motion provides toe‐off impulse, increases support force, and helps provide ground clearance.
Originality/value
A synergetic underactuated movement in the ankle joint, implemented by two cables in each leg, improves the functionality of the device without increasing the leg weight and while maintaining a reduced size. To achieve a correct and efficient motion in the ankle of an active orthosis, two steel cables were attached in the ATLAS orthosis. These cables act as a synergic biarticular linkage and transfer motion from the hip and knee joints. Synergic ankle motion provides impulse in the toe‐off, increases support force, and provides ground clearance. These goals are achieved with low energy expenditure because of synergical actuation, and high inertia is prevented in the more distal limb.
Details
Keywords
D. Sanz‐Merodio, E. Garcia and P. Gonzalez‐de‐Santos
Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power…
Abstract
Purpose
Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal, configurations on the hexapod robotic platform SILO6.
Design/methodology/approach
Dynamic simulation of this hexapod is used to develop a set of rules that optimize energy expenditure in both configurations. Later, through a theoretical analysis of energy consumption and experimental measurements in the real platform SILO6, a configuration is chosen.
Findings
It is widely accepted that the mammal configuration in statically stable walking machines is better for supporting high loads, while the insect configuration is considered to be better for improving mobility. However, taking into account the leg dynamics and not only the body weight, different results are obtained. In a mammal configuration, supporting body weight accounts for 5 per cent of power consumption while leg dynamics accounts for 31 per cent.
Originality/value
As this paper demonstrates, the energy expended when the robot walks along a straight and horizontal line is the same for both insect and mammal configurations, while power consumption during crab walking in an insect configuration exceeds power consumption in the mammal configuration.