Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 11 July 2008

D. Thailly, R. Romary, D. Roger and J‐F. Brudny

Non‐intrusive magnetic measurements in AC machines are possible with small flat coils stuck on the external surface of the housing of a running motor. The aim of the paper…

216

Abstract

Purpose

Non‐intrusive magnetic measurements in AC machines are possible with small flat coils stuck on the external surface of the housing of a running motor. The aim of the paper consists in determining transmission coefficients able to give a direct relationship between the weak external flux density and the airgap one.

Design/methodology/approach

An experimental approach shows that the decoupling principle can be applied. Transmission coefficients are determined separately for the stator yoke, the motor housing and the external air.

Findings

For low frequencies and a housing made of steel, eddy current can be neglected. The transmission coefficient depends strongly of the mode (number of poles) of the rotating field. Conversely, for higher harmonic ranks, the additional attenuation caused by eddy currents in the housing does not practically depend on the mode but is strongly dependant on the frequency.

Research limitations/implications

The transmission coefficients are determined considering a 2D electromagnetic model and several simplifying hypothesis. Experiments prove the validity of the proposed approach up to 550 Hz.

Practical implications

Up to now, many fault detection systems are based on the presence of additional harmonics in the external magnetic field spectrum. With the knowledge of simple transmission coefficients, an analysis of the variation of the magnitude of critical spectrum lines is now possible for a more precise fault detection in AC machines.

Originality/value

To the authors' knowledge, the only alternative way for the interpretation of external field measurements consist in using a numerical method with a full model of the machine which takes a lot of computation time. The proposed transmission coefficients provide a faster method valid for most of the interesting spectrum lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 2 May 2017

Mohamed Omar Younsi, Olivier Ninet, Fabrice Morganti, Jean-Philippe Lecointe, Farid Zidat and Matthieu Buire

This paper aims to study the influence of supply voltage variations on the external magnetic field emitted by grid-powered induction machines (IMs).

67

Abstract

Purpose

This paper aims to study the influence of supply voltage variations on the external magnetic field emitted by grid-powered induction machines (IMs).

Design/methodology/approach

Two models are developed in the paper to analyse, for different supply voltage values, the influence of the variations of the magnetizing voltage for which there is a link with the tangential component of the external flux. The first is an analytical model based on the IM single-phase-equivalent circuit with variable magnetizing reactance to take into account the saturation of the magnetic circuit. The second is a numerical finite element simulation to model the same phenomenon. Results of both models are analysed with experimental measures of the external flux.

Findings

The study shows that the amplitude of the external field strongly depends on supply voltage values.

Research limitations/implications

The investigation is mainly focused on the tangential component of the external magnetic field which is of high importance concerning the applicability of non-invasive methods of diagnosis, as electromagnetic torque estimation developed by the authors or internal fault determination.

Originality/value

The originality of the paper concerns the characterization of the external flux with the supply voltage for IMs. It is shown that the magnetic circuit radiates external flux differently with the load and with the supply voltage.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 14 August 2007

Stéphane Duchesne, Ewa Napieralska‐Juszczak and Daniel Roger

A new model able to describe the high frequency (HF) behaviour of the laminated cores of AC machines is proposed. The aim is to compute the external flux density of machine cores…

324

Abstract

Purpose

A new model able to describe the high frequency (HF) behaviour of the laminated cores of AC machines is proposed. The aim is to compute the external flux density of machine cores, corresponding to electromagnetic emissions in the HF range when the skin effect is predominant.

Design/methodology/approach

For high frequencies, the skin depth is much lower than the thickness of a lamination and the external flux density is determined using a new analytical model. The validity of this model is confirmed by measurements performed on a magnetic core representing a small part of a large machine and a finite element 3D simulation.

Findings

For high frequencies, the external flux density is computed considering an equivalent current layer flowing on the laminated core external surface. Eddy currents in the laminated core have a large influence on the current density in this current layer.

Research limitations/implications

The new model proposed is valid when the skin depth is lower than half the thickness of a lamination.

Practical implications

The knowledge of the machine magnetic core behaviour in the frame of the HF electromagnetic emissions has practical applications for large AC machine maintenance such as the localization of partial discharges in the winding insulation. With this model, it is possible to analyse the information given by small magnetic sensors placed between the machine core and the external frame to solve all the insulation problems.

Originality/value

The new proposed model is able to establish a link between the electric HF phenomena in the windings of a working machine and the magnetic flux density outside the laminated core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 13 July 2010

S. Jelassi, R. Romary and J.F. Brudny

The aim of this paper is to estimate the iron losses for an induction machine in the healthy case taking the slotting effect into account and to study the effect of an inter‐turn…

296

Abstract

Purpose

The aim of this paper is to estimate the iron losses for an induction machine in the healthy case taking the slotting effect into account and to study the effect of an inter‐turn short‐circuit on these losses. Theoretical results are then compared with experimental ones.

Design/methodology/approach

A simple analytical model of iron losses allows one to calculate and to appreciate the contribution of the slotting effect on induction machine iron losses without and with an inter‐turn stator short‐circuit. This semi‐analytical approach is based on the iron stator and rotor flux density repartition which is deduced from the air‐gap flux density.

Findings

The iron losses are not only due to the fundamental air‐gap flux density, but also to the slotting harmonics. In fact, the slotting effect generates harmonic flux density waves with very low magnitudes but with high‐angular velocities, leading to non‐negligible harmonic iron dynamic losses which have similar values on both the stator and the rotor. The inter‐turn short‐circuit generates an iron losses and a slotting harmonic contribution increase.

Research limitations/implications

Experimental measurements give the total iron losses. They do not allow separating the fundamental and the slotting harmonics contribution.

Practical implications

The knowledge of the iron losses behaviour in the healthy machine taking into account the slotting effect is important to optimize the design. The fault contribution on these losses allows one to estimate the damage which can be engendered by the fault.

Originality/value

Generally, iron losses studies and calculations are performed numerically using finite element software. The analytical approach can be interesting because it allows one to make faster calculations and to analyze the influence of the machine geometric parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 4 of 4
Per page
102050