Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 18 May 2012

K. Siwińska‐Stefańska, F. Ciesielczyk, A. Kołodziejczak‐Radzimska, D. Paukszta, J. Sójka‐Ledakowicz and T. Jesionowski

The purpose of this paper is to report on a method of synthesis of TiO2‐SiO2 oxide composites characterised by spherically shaped particles with sizes in the micrometric ranges…

465

Abstract

Purpose

The purpose of this paper is to report on a method of synthesis of TiO2‐SiO2 oxide composites characterised by spherically shaped particles with sizes in the micrometric ranges, which can be applied as a new generation of textile/TiO2‐SiO2 composites with barrier properties against UV radiation. Synthesis and characterisation of TiO2‐SiO2 oxide composites with a high degree of dispersion were performed, and their influence on the barrier properties of textile fabrics was investigated.

Design/methodology/approach

The precipitation was performed with the use of solutions of titanium sulphate and sodium silicate as the precipitating agent, which are cheap alternatives to organic precursors of Ti and Si. The reaction was conducted in an emulsion system, where cyclohexane was used as the organic phase and non‐ionic surfactants NP3 and NP6 as emulsifiers were applied.

Findings

The direction of substrate supply, concentration of the reagents and their ratio and other conditions of precipitation process were found to significantly affect the physicochemical parameters of the pigments obtained. A possibility is provided of manufacturing a new generation of textile/TiO2‐SiO2 composites with barrier properties against UV radiation.

Research limitations/implications

Titanium sulphate, sodium silicate, cyclohexane as the organic phase, and non‐ionic surfactants NP3 and NP6 as emulsifiers, were used.

Practical implications

Synthesis of a new generation of textile/TiO2‐SiO2 composites with barrier properties against UV radiation has been performed. Textile fabrics modified with hybrid composites demonstrated high absorption of UV radiation over the full wavelength range.

Originality/value

Determination of optimum conditions of TiO2‐SiO2 oxide composites precipitation to obtain products with desired physicochemical, dispersive and structural properties. Development of nano‐structural textile composites with barrier properties, protecting against UV radiation.

Access Restricted. View access options
Article
Publication date: 3 October 2008

Kai Yang, Ming‐Li Jiao, Yi‐Song Chen, Jun Li and Wei‐Yuan Zhang

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with…

689

Abstract

Purpose

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with soft simulated skin.

Design/methodology/approach

The thermal manikin applied in this study was a copper manikin, typical of which was its soft simulated skin – a newly thermoplastic elastomer material. Based on this novel thermal manikin, the heat transfer analysis of an extravehicular liquid cooling garment was performed. To satisfy the practical engineering application and simplify analysis, the hypotheses were proposed, and then the heat transfer model was established by heat transfer theory, in which the heat exchange equation of the liquid cooling garment with the thermal manikin and with the air layer, and the garment's total heat dissipating capacity were derived.

Findings

The verification experiments performed in a climatic chamber by a thermal manikin wearing a liquid cooling garment at different surface temperatures of the thermal manikin show that the modeling value fits well with the experimental value, and the heat transfer model of the liquid cooling garment has a high accuracy. Meanwhile, the relationship between the heat‐dissipating capacity of the liquid cooling garment and its design parameters – inlet temperature and liquid velocity – is suggested as being based on the heat transfer model.

Originality/value

The paper shows that it is an effective method to control the heat‐dissipating capacity of a liquid cooling garment by changing the inlet temperature to some degree, but not by changing the liquid velocity.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 2 of 2
Per page
102050