D. Katherasan, Jiju V. Elias, P. Sathiya and A. Noorul Haq
The purpose of this study is to optimize the process parameters (wire feed rate (F), voltage (V), welding speed (S) and torch angle (A)) in order to obtain the optimum bead…
Abstract
Purpose
The purpose of this study is to optimize the process parameters (wire feed rate (F), voltage (V), welding speed (S) and torch angle (A)) in order to obtain the optimum bead geometry (bead width (W), reinforcement (R) and depth of penetration (P)), considering the ranges of the process parameters using evolutionary algorithms, namely genetic algorithm (GA) and simulated annealing (SA) algorithm.
Design/methodology/approach
The modeling of welding parameters in flux cored arc welding process using a set of experimental data and regression analysis, and optimization using GA and SA algorithm.
Findings
The adequate mathematical model was developed. The multiple objectives were optimized satisfactorily by the GA and SA algorithms. The feasible solution results are very closer to the optimized results and the percentage error was found to be negligibly small.
Originality/value
The optimal welding parameters were identified in order to increase the productivity. The welding input parameters effect was found.
Details
Keywords
P. Sathiya, M.Y. Abdul Jaleel and D. Katherasan
This study aims to determine the near optimal welding process parameters (beam power (BP), travel speed (TS) and focal position (FP)) using grey relational analysis by…
Abstract
Purpose
This study aims to determine the near optimal welding process parameters (beam power (BP), travel speed (TS) and focal position (FP)) using grey relational analysis by simultaneously considering multiple output parameters (depth of penetration and bead width). Further, the optimized parameters were evaluated through the microstructural characterization and hardness measurements across the weld zone.
Design/methodology/approach
It is appropriate to apply Taguchi's technique to a complex system like welding process. Therefore, this study is made to determine the near optimal welding process parameters (BP, TS and FP) using grey relational analysis by simultaneously considering multiple output parameters (depth of penetration and bead width).
Findings
Taguchi experimental design for determining welding parameters was successful. The hardness of the Argon shielded weld metal was comparatively lesser than the Helium shielded weld metal. The Helium shielded weld metal microstructure comprises of finer grains and higher amounts of equiaxed grains. Argon and Helium shielded weld metal microstructure was endowed with a higher amount of secondary interdendritic austenite phase.
Originality/value
The optimal welding conditions were identified in order to increase the productivity and minimize the total operating cost. The process input parameters effect was determined under the optimal welding combinations.
Details
Keywords
B.B.V.L. Deepak, Raju M.V.A. Bahubalendruni, Ch A. Rao and Jalumuru Nalini
This paper aims to automate the welding operation that motion control, sensor integration and coordination with the welding power source. Therefore, there is a need for…
Abstract
Purpose
This paper aims to automate the welding operation that motion control, sensor integration and coordination with the welding power source. Therefore, there is a need for sophisticated technologies to control precisely the process in terms of positioning the welding torch, and controlling the welding parameters through the use of correct devices which are aided by appropriate control tools and techniques.
Design/methodology/approach
A new seam tracking methodology, named sewing technique, has been introduced for the welded joints available in computer-aided design (CAD) environment. This methodology gives the seam path by drawing a line through the adjacent centroids of curve fitted in the weld joint volume. Obtained geometric path and kinematic constraints are given as input to the modeled robot for performing welding operation followed by desired trajectory.
Findings
In this investigation, a novel and efficient weld seam technique has been developed to produce uniform welded joints. The key feature of this approach is that the initial and end positions of the weld seams can be obtained easily. Because of this, the robot can be controlled flexibly during welding operation.
Originality/value
This investigation deals with the development of an automated seam tracking methodology for the welded joints available in CAD environment. Validation of the developed methodology has been done through simulation results while performing welding operations for different weld profiles.
Details
Keywords
Alpesh H. Makwana and A.A. Shaikh
In this article, a novel hybrid composite patch consisting of unidirectional carbon fiber and glass fiber is considered for repair of the aircraft structure. The purpose of this…
Abstract
Purpose
In this article, a novel hybrid composite patch consisting of unidirectional carbon fiber and glass fiber is considered for repair of the aircraft structure. The purpose of this paper is to assess the performance of hybrid composite patch repair of cracked structure and propose an optimized solution to a designer for selection of the appropriate level of a parameter to ensure effective repair solution.
Design/methodology/approach
Elastic properties of the hybrid composites are estimated by micromechanical modeling. Performance of hybrid composite patch repair is evaluated by numerical analysis of stress intensity factor (SIF), shear stress, and peel stress. Design of experiment is used to determine responses for a different combination of design parameters. The second-order mathematical model is suggested for SIF and peel stress. Adequacy of the model is checked by ANOVA and used as a fitness function. Multiobjective optimization is carried out with a genetic algorithm to arrive at the optimal solution.
Findings
The hybrid composite patch has maintained equilibrium between the SIF reduction and rise of the peel stress. The repair efficiency and repair durability can be ensured by selection of an optimum value of volume fraction of glass fiber, applied stress, and adhesive thickness.
Originality/value
The composite patch with varying stiffness is realized by hybridization with different volume fraction of fibers. Analysis and identification of optimum parameter to reduce the SIF and peel stress for hybrid composite patch repair are presented in this article.
Details
Keywords
Amruta Rout, Deepak Bbvl, Bibhuti B. Biswal and Golak Bihari Mahanta
This paper aims to propose fuzzy-regression-particle swarm optimization (PSO) based hybrid optimization approach for getting maximum weld quality in terms of weld strength and…
Abstract
Purpose
This paper aims to propose fuzzy-regression-particle swarm optimization (PSO) based hybrid optimization approach for getting maximum weld quality in terms of weld strength and bead depth of penetration.
Design/methodology/approach
The prediction of welding quality to achieve best of it is not possible by any single optimization technique. Therefore, fuzzy technique has been applied to predict the weld quality in terms of weld strength and weld bead geometry in combination with a multi-performance characteristic index (MPCI). Then regression analysis has been applied to develop relation between the MPCI output value and the input welding process parameters. Finally, PSO method has been used to get the optimal welding condition by maximizing the MPCI value.
Findings
The predicted weld quality or the MPCI values in terms of combined weld strength and bead geometry has been found to be highly co-related with the weld process parameters. Therefore, it makes the process easy for setting of weld process parameters for achieving best weld quality, as there is no need to finding the relation for individual weld quality parameter and weld process parameters although they are co-related in a complicated manner.
Originality/value
In this paper, a new hybrid approach for predicting the weld quality in terms of both mechanical properties and weld geometry and optimizing the same has been proposed. As these parameters are highly correlated and dependent on the weld process parameters the proposed approach can effectively analyzing the ambiguity and significance of each process and performance parameter.
Details
Keywords
Zhiqiang Liang, Xintian Liu, Wang Yansong and Xiaolan Wang
This study aims to accurately evaluate the influence of various error intervals on the performance of the wiper.
Abstract
Purpose
This study aims to accurately evaluate the influence of various error intervals on the performance of the wiper.
Design/methodology/approach
The wiper structural system is decomposed into classical four-link planar for kinematics analysis, and it was modeled respectively by using interval method, universal grey number theory and enumeration approach depending on the nature of uncertainty.
Findings
The universal grey number theory is a viable methodology for the accurate analysis of uncertain structural system.
Originality/value
(1) The model of uncertain wiper structural system is established. (2) Universal grey number theory and new parameters are adopted to analyze the presence of uncertain wiper structural system. (3) Comparative analysis of response quantities is obtained by interval method, universal grey number theory and enumeration method.