Yanbing Ni, Biao Zhang, Wenxia Guo and Cuiyan Shao
The purpose of this paper is to develop a means of the kinematic calibration of a parallel manipulator with full-circle rotation.
Abstract
Purpose
The purpose of this paper is to develop a means of the kinematic calibration of a parallel manipulator with full-circle rotation.
Design/methodology/approach
An error-mapping model based on the space vector chain is formulated and parameter identification is proposed based on double ball-bar (DBB) measurements. The measurement trajectory is determined by the motion characteristics of this mechanism and whether the error sources can be identified. Error compensation is proposed by modifying the inputs, and a two-step kinematic calibration method is implemented.
Findings
The simulation and experiment results show that this kinematic calibration method is effective. The DBB length errors and the position errors in the end-effector of the parallel manipulator with full-circle rotation are greatly reduced after error compensation.
Originality/value
By establishing the mapping relationship between measured error data and geometric error sources, the error parameters of this mechanism are identified; thus, the pose errors are unnecessary to be measured directly. The effectiveness of the kinematic calibration method is verified by computer simulation and experiment. This proposed calibration method can help the novel parallel manipulator with full-circle rotation and other similar parallel mechanisms to improve their accuracy.