Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 25 September 2019

James Uhomoibhi, Clement Onime and Hui Wang

The purpose of this paper is to report on developments and applications of mixed reality cubicles and their impacts on learning in higher education. This paper investigates and…

498

Abstract

Purpose

The purpose of this paper is to report on developments and applications of mixed reality cubicles and their impacts on learning in higher education. This paper investigates and presents the cost effective application of augmented reality (AR) as a mixed reality technology via or to mobile devices such as head-mounted devices, smart phones and tablets. Discuss the development of mixed reality applications for mobile (smartphones and tablets) devices leading up to the implementation of a mixed reality cubicle for immersive three dimensional (3D) visualizations.

Design/methodology/approach

The approach adopted was to limit the considerations to the application of AR via mobile platforms including head-mounted devices with focus on smartphones and tablets, which contain basic feedback–to-user channels such as speakers and display screens. An AR visualization cubicle was jointly developed and applied by three collaborating institutions. The markers, acting as placeholders acts as identifiable reference points for objects being inserted in the mixed reality world. Hundreds of participants comprising academics and students from seven different countries took part in the studies and gave feedback on impact on their learning experience.

Findings

Results from current study show less than 30 percent had used mixed reality environments. This is lower than expected. About 70 percent of participants were first time users of mixed reality technologies. This indicates a relatively low use of mixed reality technologies in education. This is consistent with research findings reported that educational use and research on AR is still not common despite their categorization as emerging technologies with great promise for educational use.

Research limitations/implications

Current research has focused mainly on cubicles which provides immersive experience if used with head-mounted devices (goggles and smartphones), that are limited by their display/screen sizes. There are some issues with limited battery lifetime for energy to function, hence the need to use rechargeable batteries. Also, the standard dimension of cubicles does not allow for group visualizations. The current cubicle has limitations associated with complex gestures and movements involving two hands, as one hand are currently needed for holding the mobile phone.

Practical implications

The use of mixed reality cubicles would allow and enhance information visualization for big data in real time and without restrictions. There is potential to have this extended for use in exploring and studying otherwise inaccessible locations such as sea beds and underground caves. Social implications – Following on from this study further work could be done to developing and application of mixed reality cubicles that would impact businesses, health and entertainment.

Originality/value

The originality of this paper lies in the unique approach used in the study of developments and applications of mixed reality cubicles and their impacts on learning. The diverse composition in nature and location of participants drawn from many countries comprising of both tutors and students adds value to the present study. The value of this research include amongst others, the useful results obtained and scope for developments in the future.

Details

The International Journal of Information and Learning Technology, vol. 37 no. 1-2
Type: Research Article
ISSN: 2056-4880

Keywords

Access Restricted. View access options
Article
Publication date: 10 November 2020

Clement Onime, James Uhomoibhi, Hui Wang and Mattia Santachiara

This paper presents a reclassification of markers for mixed reality environments that is also applicable to the use of markers in robot navigation systems and 3D modelling. In the…

351

Abstract

Purpose

This paper presents a reclassification of markers for mixed reality environments that is also applicable to the use of markers in robot navigation systems and 3D modelling. In the case of Augmented Reality (AR) mixed reality environments, markers are used to integrate computer generated (virtual) objects into a predominantly real world, while in Augmented Virtuality (AV) mixed reality environments, the goal is to integrate real objects into a predominantly virtual (computer generated) world. Apart from AR/AV classifications, mixed reality environments have also been classified by reality; output technology/display devices; immersiveness as well as by visibility of markers.

Design/methodology/approach

The approach adopted consists of presenting six existing classifications of mixed reality environments and then extending them to define new categories of abstract, blended, virtual augmented, active and smart markers. This is supported with results/examples taken from the joint Mixed Augmented and Virtual Reality Laboratory (MAVRLAB) of the Ulster University, Belfast, Northern Ireland; the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy and Santasco SrL, Regio Emilia/Milan, Italy.

Findings

Existing classification of markers and mixed reality environments are mainly binary in nature and do not adequately capture the contextual relationship between markers and their use and application. The reclassification of markers into abstract, blended and virtual categories captures the context for simple use and applications while the categories of augmented, active and smart markers captures the relationship for enhanced or more complex use of markers. The new classifications are capable of improving the definitions of existing simple marker and markerless mixed reality environments as well as supporting more complex features within mixed reality environments such as co-location of objects, advanced interactivity, personalised user experience.

Research limitations/implications

It is thought that applications and devices in mixed reality environments when properly developed and deployed enhances the real environment by making invisible information visible to the user. The current work only marginally covers the use of internet of things (IoT) devices in mixed reality environments as well as potential implications for robot navigation systems and 3D modelling.

Practical implications

The use of these reclassifications enables researchers, developers and users of mixed reality environments to select and make informed decisions on best tools and environment for their respective application, while conveying information with additional clarity and accuracy. The development and application of more complex markers would contribute in no small measure to attaining greater advancements in extending current knowledge and developing applications to positively impact entertainment, business and health while minimizing costs and maximizing benefits.

Originality/value

The originality of this paper lies in the approach adopted in reclassifying markers. This is supported with results and work carried out at the MAV Reality Laboratory of Ulster University, Belfast–UK, the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste-Italy and Santasco SrL, Regio Emilia, Milan–Italy. The value of present research lies in the definitions of new categories as well as the discussions of how they improve mixed reality environments and application especially in the health and education sectors.

Details

The International Journal of Information and Learning Technology, vol. 38 no. 1
Type: Research Article
ISSN: 2056-4880

Keywords

1 – 2 of 2
Per page
102050