Search results
1 – 2 of 2Wenjin Guo, Qian Li, Xinran Yang, Pengbo Xu, Gaozhe Cai and Chuanjin Cui
In recent decades, advancements in biosensors technology have made fluorescent biosensor pivotal for biomolecular recognition. This paper aims to provide an in-depth analysis of…
Abstract
Purpose
In recent decades, advancements in biosensors technology have made fluorescent biosensor pivotal for biomolecular recognition. This paper aims to provide an in-depth analysis of polymerase chain reaction (PCR) fluorescent biosensor detection technology for identifying Escherichia coli (E. coli), setting the stage for future developments in the field.
Design/methodology/approach
The review of literature on PCR fluorescent biosensor detection technology for E. coli over the past decades includes discussions on traditional biological fluorescent detection, quantitative PCR fluorescent detection and digital fluorescent detection technology.
Findings
Advancements in fluorescent biosensor technology enable precise measurement of fluorescent signals, and when integrated with microfluidic technology, produce compact, reagent-efficient digital sensor devices.
Originality/value
This paper provides a comprehensive review of recent fluorescent detection technology for pathogenic E. coli, assessing method efficiencies and offering insights to advance the field.
Details
Keywords
Xinran Yang, Junhui Du, Hongshuo Chen, Chuanjin Cui, Haibin Liu and Xuechao Zhang
Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with…
Abstract
Purpose
Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with nanomaterials as channels play an important role in the field of heavy metal ion detection. This paper aims to review the research progress of silicon nanowire, graphene and carbon nanotube field-effect tube biosensors for heavy metal ion detection, so as to provide technical support and practical experience for the application and promotion of FET.
Design/methodology/approach
The article introduces the structure and principle of three kinds of FET with three kinds of nanomaterials, namely, silicon nanowires, graphene and carbon nanotubes, as the channels, and lists examples of the detection of common heavy metal ions by the three kinds of FET sensors in recent years. The article focuses on the advantages and disadvantages of the three sensors, puts forward measures to improve the performance of the FET and looks forward to its future development direction.
Findings
Compared with conventional instrumental analytical methods, FETs prepared using nanomaterials as channels have the advantages of fast response speed, high sensitivity and good selectivity, among which the diversified processing methods of graphene, the multi-heavy metal ions detection of silicon nanowires and the very low detection limit and wider detection range of carbon nanotubes have made them one of the most promising detection tools in the field of heavy metal ions detection. Of course, through in-depth analysis, this type of sensor has certain limitations, such as high cost and strict process requirements, which are yet to be solved.
Originality/value
This paper elaborates on the detection principle and classification of field-effect tube, investigates and researches the application status of three kinds of FET biosensors in the detection of common heavy metal ions. By comparing the advantages and disadvantages of each of the three sensors in practical applications, the paper focuses on the feasibility of improvement measures, looks forward to the development trend in the field of heavy metal detection and ultimately promotes the application of field-effect tube development technology to continue to progress, so that its performance continues to improve and the application field is constantly expanding.
Details