Search results

1 – 5 of 5
Article
Publication date: 15 March 2022

Christos Katsiropoulos, Spyros Pantelakis, Francesca Felline, Giuseppe Buccoliero and Silvio Pappada

The purpose of this paper is to investigate the feasibility to produce a novel aircraft full stiffened panel using entirely a new hybrid thermoplastic composite material allowing…

Abstract

Purpose

The purpose of this paper is to investigate the feasibility to produce a novel aircraft full stiffened panel using entirely a new hybrid thermoplastic composite material allowing for appreciably lower processing temperatures as compared to conventional structural thermoplastic composites.

Design/methodology/approach

For stiffening the fuselage skin panel, the out of autoclave welding of four composite stringers was obtained using a modified induction welding (IW) process. The quality of the welds was investigated using micro-tomography and the mechanical strength of the lap joints was assessed by means of single-lap shear strength (SLSS) tests. Moreover, a holistic design index was implemented as a decision support tool for selecting the optimal set of IW process parameters. Based on the index used, the quality as well as the entire life cycle cost and environmental impact are accounted for.

Findings

Low porosity values as well as no deconsolidation were observed at the investigated application, and the average measured SLSS, even found lower, lies within the range of the respective values encountered in other similar high-performance applications. It is exhibited that after the optimization, the IW process offers significant potential to replace the autoclave process in welding applications. Thus, it paves the way for reduced cost and increased sustainability, while still meeting the predefined quality constraints.

Originality/value

Although several studies on the IW application have been conducted, limited results exist by using novel thermoplastic materials for aircraft structural applications.

Article
Publication date: 25 January 2019

Andreas Loukopoulos, Christos Vasilios Katsiropoulos and Spiros G. Pantelakis

The purpose of this paper is to quantify the environmental footprint and cost and thus compare different manufacturing scenarios associated with the production of aeronautical…

Abstract

Purpose

The purpose of this paper is to quantify the environmental footprint and cost and thus compare different manufacturing scenarios associated with the production of aeronautical structural components.

Design/methodology/approach

A representative helicopter canopy, i.e., canopy of the EUROCOPTER EC Twin Star helicopter described in Pantelakis et al. (2009), has been considered for the carbon footprint (life cycle energy and climate change impact analysis) along with the life cycle costing analysis. Four scenarios – combinations of different manufacturing technologies (autoclave and resin transfer molding (RTM)) and end-of-life treatment scenarios (mechanical recycling and pyrolysis) are considered.

Findings

Using the models developed the expected environmental and cost benefits by involving the RTM technique have been quantified. The environmental impact was expressed in terms of energy consumption and of Global Warming Potential-100. From an environmental standpoint, processing the canopy using the RTM technique leads to decreased energy demands as compared to autoclaving because of the shorter curing cycles exhibited from this technique and thus the less time needed. As far as the financial viability of both processing scenarios is concerned, the more steps needed for preparing the mold and the need for auxiliary materials increase the material and the labor cost of autoclaving as compared to RTM.

Originality/value

At the early design stages in aeronautics, a number of disciplines (environmental, financial and mechanical) should be taken into account in order to evaluate alternative scenarios (material, manufacturing, recycling, etc.). In this paper a methodology is developed toward this direction, quantifying the environmental and financial viability of different manufacturing scenarios associated with the production of aeronautical structures.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 January 2020

Panagiota Polydoropoulou, Konstantinos Tserpes, Spiros Pantelakis and Christos Katsiropoulos

The purpose of this paper is the development of a multiscale model which simulates the effect of the dispersion, the waviness, the interphase geometry as well as the…

Abstract

Purpose

The purpose of this paper is the development of a multiscale model which simulates the effect of the dispersion, the waviness, the interphase geometry as well as the agglomerations of multi-walled carbon nanotubes (MWCNTs) on the Young’s modulus of a polymer filled with 0.4 Vol.% MWCNTs.

Design/methodology/approach

For the determination of the homogenized elastic properties of the hybrid material representative unit cells (RUCs) have been used. The predicted homogenized elastic properties were used for the prediction of the Young’s modulus of the filled material by simulating a finite element (FE) model of a tensile specimen. Moreover, the model has been validated by comparing the predicted values of the numerical analysis with experimental tensile results.

Findings

As the MWCNT agglomerates increase, the results showed a remarkable decrease of the Young’s modulus regarding the polymer filled with aligned MWCNTs while only slight differences on the Young’s modulus have been found in the case of randomly oriented MWCNTs. This might be attributed to the low concentration of the MWCNTs (0.4 Vol.%) into the polymer. For low MWCNTs concentrations, the interphase seems to have negligible effect on the Young’s modulus. Furthermore, as the MWCNTs waviness increases, a remarkable decrease of the Young’s modulus of the polymer filled with aligned MWCNTs is observed. In the case that MWCNTs are randomly dispersed into the polymer, both numerical and experimental results have been found to be consistent regarding the Young’s modulus.

Practical implications

The methodology used can be adopted by any system containing nanofillers.

Originality/value

Although several studies on the effect of the MWCNTs distribution on the Young’s modulus have been conducted, limited results exist by using a more realistic RUC including a periodic geometry of more than 20 MWCNTs with random orientation and a more realistic waviness of MWCNTs with aspect ratio exceeding 150.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 December 2018

Panagiota Polydoropoulou, Christos Vasilios Katsiropoulos, Andreas Loukopoulos and Spiros Pantelakis

Over the last decades, self-healing materials based on polymers are attracting increasing interest due to their potential for detecting and “autonomically” healing damage. The use…

250

Abstract

Purpose

Over the last decades, self-healing materials based on polymers are attracting increasing interest due to their potential for detecting and “autonomically” healing damage. The use of embedded self-healing microcapsules represents one of the most popular self-healing concepts. Yet, extensive investigations are still needed to convince on the efficiency of the above concept. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, the effect of embedded self-healing microcapsules on the ILSS behavior of carbon fiber reinforced composite materials has been studied. Moreover, the self-healing efficiency has been assessed. The results of the mechanical tests were discussed supported by scanning electron microscope (SEM) as well as by Attenuated Total Reflection–Fourier-transform infrared spectroscopy (ATR–FTIR) analyses.

Findings

The results indicate a general trend of a degraded mechanical behavior of the enhanced materials, as the microcapsules exhibit a non-uniform dispersion and form agglomerations which act as internal defects. A remarkable value of the self-healing efficiency has been found for materials with limited damage, e.g. matrix micro-cracks. However, for significant damage, in terms of large matrix cracks and delaminations as well as fiber breakages, the self-healing efficiency is limited.

Originality/value

The results obtained by SEM analysis as well as by ATR–FTIR spectroscopy constitute a strong indication that the self-healing mechanism has been activated. However, further investigation should be conducted in order to provide definite evidence.

Details

International Journal of Structural Integrity, vol. 9 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 August 2014

Christos Vasilios Katsiropoulos, Evangelos D. Drainas and Spiros G. Pantelakis

– The purpose of this paper is to assess the quality of adhesively bonded joints using an alternative artificial neural networks (ANN) approach.

Abstract

Purpose

The purpose of this paper is to assess the quality of adhesively bonded joints using an alternative artificial neural networks (ANN) approach.

Design/methodology/approach

Following the necessary surface pre-treatment and bonding process, the coupons were investigated for possible defects using C-scan ultrasonic inspection. Afterwards, the damage severity factor (DSF) theory was applied in order to quantify the existing damage state. A series of G IC mechanical tests was then conducted so as to assess the fracture toughness behavior of the bonded samples. Finally, the data derived both from the NDT tests (DSF) and the mechanical tests (fracture toughness energy) were combined and used to train the ANN which was developed within the present work.

Findings

Using the developed neural network (NN) the bonding quality, in terms not only of defects but also of fracture toughness behavior, can be accessed through NDT testing, minimizing the need for mechanical tests only in the initial material characterization phase.

Originality/value

The innovation of the paper stands on the feasibility of an alternative approach for assessing the quality of adhesively bonded joints using and ANNs, thus minimizing the necessary testing effort.

Details

International Journal of Structural Integrity, vol. 5 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 5 of 5