Dylan Agius, Mladenko Kajtaz, Kyriakos I. Kourousis, Chris Wallbrink and Weiping Hu
This study presents the improvements of the multicomponent Armstrong–Frederick model with multiplier (MAFM) performance through a numerical optimisation methodology available in a…
Abstract
Purpose
This study presents the improvements of the multicomponent Armstrong–Frederick model with multiplier (MAFM) performance through a numerical optimisation methodology available in a commercial software. Moreover, this study explores the application of a multiobjective optimisation technique for the determination of the parameters of the constitutive models using uniaxial experimental data gathered from aluminium alloy 7075-T6 specimens. This approach aims to improve the overall accuracy of stress–strain response, for not only symmetric strain-controlled loading but also asymmetrically strain- and stress-controlled loading.
Design/methodology/approach
Experimental data from stress- and strain-controlled symmetric and asymmetric cyclic loadings have been used for this purpose. The analysis of the influence of the parameters on simulation accuracy has led to an adjustment scheme that can be used for focused optimisation of the MAFM model performance. The method was successfully used to provide a better understanding of the influence of each model parameter on the overall simulation accuracy.
Findings
The optimisation identified an important issue associated with competing ratcheting and mean stress relaxation objectives, highlighting the issues with arriving at a parameter set that can simulate ratcheting and mean stress relaxation for load cases not reaching at complete relaxation.
Practical implications
The study uses a strain-life fatigue application to demonstrate the importance of incorporating a technique such as the presented multiobjective optimisation method to arrive at robust parameters capable of accurately simulating a variety of transient cyclic phenomena.
Originality/value
The proposed methodology improves the accuracy of cyclic plasticity phenomena and strain-life fatigue simulations for engineering applications. This study is considered a valuable contribution for the engineering community, as it can act as starting point for further exploration of the benefits that can be obtained through material parameter optimisation methodologies for models of the MAFM class.
Details
Keywords
Dylan Agius, Kyriakos I. Kourousis and Chris Wallbrink
The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V…
Abstract
Purpose
The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V in engineering applications requires a detailed understanding of its elastoplastic behaviour. This preliminary study intends to create a better understanding on the cyclic plasticity phenomena exhibited by this material under symmetric and asymmetric strain-controlled cyclic loading.
Design/methodology/approach
This paper investigates experimentally the cyclic elastoplastic behaviour of as-built SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled loading histories and compares it to that of wrought Ti-6Al-4V. Moreover, a plasticity model has been customised to simulate effectively the mechanical behaviour of the as-built SLM Ti-6Al-4V. This model is formulated to account for the SLM Ti-6Al-4V-specific characteristics, under the strain-controlled experiments.
Findings
The elastoplastic behaviour of the as-built SLM Ti-6Al-4V has been compared to that of the wrought material, enabling characterisation of the cyclic transient phenomena under symmetric and asymmetric strain-controlled loadings. The test results have identified a difference in the strain-controlled cyclic phenomena in the as-build SLM Ti-6Al-4V when compared to its wrought counterpart, because of a difference in their microstructure. The plasticity model offers accurate simulation of the observed experimental behaviour in the SLM material.
Research limitations/implications
Further investigation through a more extensive test campaign involving a wider set of strain-controlled loading cases, including multiaxial (biaxial) histories, is required for a more complete characterisation of the material performance.
Originality/value
The present investigation offers an advancement in the knowledge of cyclic transient effects exhibited by a typical α’ martensite SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled tests. The research data and findings reported are among the very few reported so far in the literature.