Search results
1 – 3 of 3Justin C Emereole, Chigoziri N Njoku, Alexander I Ikeuba, Ifenyinwa C Ekeke, Emmanuel Yakubu, Ogbonna C Nkuzinna, Nnamdi A Nnodum and Madueke S Nwakaudu
This study aims to develop eco-friendly corrosion inhibitors for aluminum in acidic media by evaluating the corrosion inhibition properties of corn leaf extract (CLE) using…
Abstract
Purpose
This study aims to develop eco-friendly corrosion inhibitors for aluminum in acidic media by evaluating the corrosion inhibition properties of corn leaf extract (CLE) using response surface methodology (RSM) and experiments.
Design/methodology/approach
The RSM was combined with experiments to evaluate the corrosion inhibition properties of CLE on aluminum in acid media.
Findings
The effectiveness of the inhibition increased with increasing inhibitor concentration and time but decreased with increasing temperature. The corrosion inhibition mechanism revealed the corrosion process is spontaneous exothermic physical adsorption. Thermodynamic parameters revealed an activation energy between 32.1 and 24.7 kJ/mol, energy of adsorption between −14.53 and −65.07 and Gibbs free energy of −10.12 kJ/mol which indicated the CLE exothermically spontaneously physisorbed. A model was generated to estimate the effect of the process parameters (inhibitor concentration, reaction time and temperature) using the RSM. Optimization of the process factors was also carried out using the RSM. The percentage inhibition efficiency obtained experimentally (85.61%) was closely comparable to 84.89% obtained by the theoretical technique (RSM). The SEM observations of the inhibited and uninhibited Al samples demonstrated that CLE is an effective corrosion inhibitor for aluminum in acid media.
Originality/value
Results herein provide novel information on the possible application of CLEs as effective eco-friendly corrosion inhibitors.
Details
Keywords
Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh
Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…
Abstract
Purpose
Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.
Design/methodology/approach
In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.
Findings
Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.
Originality/value
This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.
Details
Keywords
Osuani Fyneface Idema, Malik Abdulwahab, Innocent Okechi Arukalam, Ifeyinwa Ekeke, Chigoziri N. Njoku, Chioma Anyiam, Benedict Onyeachu and Emeka Emmanuel Oguzie
Hexavalent chromium has been a benchmark corrosion inhibitor before it was phased out because of its carcinogenic properties. However, because it was phased out, many alternative…
Abstract
Purpose
Hexavalent chromium has been a benchmark corrosion inhibitor before it was phased out because of its carcinogenic properties. However, because it was phased out, many alternative corrosion inhibitors have been introduced but failed to meet the performance of this benchmark inhibitor. Consequently, benzotriazole (BTA) was reported to exhibit chromate-like inhibition performance. Subsequently, Intelli-ion was reported by researchers to exhibit chromate-like performance also with claims of being a unique alternative. This paper aims to review the inhibition performance of these two alternatives. Above all, promotes the unique inhibition performance of Intelli-ion that makes it suitable for application in many sectors.
Design/methodology/approach
In this paper, the corrosion inhibition performances of BTA and Intelli-ion were compared systematically by reviewing some related literatures based on the opinion of the authors.
Findings
Different methodologies for measuring the inhibition performance of BTA showed that it’s an inhibitor of choice. However, the cut edge corrosion performance of Intelli-ion and BTA corrosion inhibitors on galvanized steel of 55% Wt.% Al, 44% Wt.% Zn and 1% Wt.% Si in 5 Wt.% NaCl solution was compared when subjected to scanning vibrating electrode technique (SVET) for 24 h. The results showed faint blue-colored region depicting negative cathodic current density for the Intelli-ion while there was a high-intensity of red-colored region depicting a positive anodic current density for BTA. In other words, the Intelli-ion inhibitor had a better overall cut-edge corrosion inhibition performance than the BTA inhibitor.
Originality/value
This paper compares and further, summarizes the corrosion inhibition performance of Intelli-ion and BTA by evaluating SVET results from the literature. In addition, it serves as an overview and reference for the unique inhibition performance of Intelli-ion when applied in field applications.
Details