Ying Zhao, Wei Chen, Mehrdad Arashpour, Zhuzhang Yang, Chengxin Shao and Chao Li
Prefabricated construction is often hindered by scheduling delays. This paper aims to propose a schedule delay prediction model system, which can provide the key information for…
Abstract
Purpose
Prefabricated construction is often hindered by scheduling delays. This paper aims to propose a schedule delay prediction model system, which can provide the key information for controlling the delay effects of risk-related factors on scheduling in prefabricated construction.
Design/methodology/approach
This paper combines SD (System Dynamics) and BP (Back Propagation) neural network to predict risk related delays. The SD-based prediction model focuses on dynamically presenting the interrelated impacts of risk events and activities along with workflow. While BP neural network model is proposed to evaluate the delay effect for a single risk event disrupting a single job, which is the necessary input parameter of SD-based model.
Findings
The established model system is validated through a structural test, an extreme condition test, a sensitivity test, and an error test, and shows an excellent performance on aspect of reliability and accuracy. Furthermore, 5 scenarios of case application during 3 different projects located in separate cities prove the prediction model system can be applied in a wide range.
Originality/value
This paper contributes to academic research on combination of SD and BP neural network at the operational level prediction, and a practical prediction tool supporting managers to take decision-making in a timely manner against delays.
Details
Keywords
Chengxin Yin, Yan Guo, Jianguo Yang and Xiaoting Ren
The purpose of this paper is to improve the customer satisfaction by offering online personalized recommendation system.
Abstract
Purpose
The purpose of this paper is to improve the customer satisfaction by offering online personalized recommendation system.
Design/methodology/approach
By employing an innovative associative classification method, this paper is able to predict a customer’s pleasure during the online while-recommending process. Consumers can make an active decision to recommended products. Based on customer’s characteristics, a product will be recommended to the potential buyer if the model predicts that he/she will click to view the product. That is, he/she is satisfied with the recommended product. Finally, the feasibility of the proposed recommendation system is validated through a Taobao shop.
Findings
The results of the experimental study clearly show that the online personalized recommendation system maximizes the customer’s satisfaction during the online while-recommending process based on an innovative associative classification method on the basis of consumer initiative decision.
Originality/value
Conventionally, customers are considered as passive recipients of the recommendation system. However, customers are tired of the recommendation system, and they can do nothing sometimes. This paper designs a new recommendation system on the basis of consumer initiative decision. The proposed recommendation system maximizes the customer’s satisfaction during the online while-recommending process.