Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 8 May 2007

Yuan Kang, Ping‐Chen Shen, Cheng‐Hsign Chen, Yeon‐Pun Chang and Hsing‐Han Lee

This paper seeks to modify the determinations of flow rate and fluid resistance, which can be realized and confident from the measurements of flow rates in experiments.

472

Abstract

Purpose

This paper seeks to modify the determinations of flow rate and fluid resistance, which can be realized and confident from the measurements of flow rates in experiments.

Design/methodology/approach

According to coupled physics of solid membrane and lubrication fluid, finite element method is used simultaneously to determine membrane deflection and film thickness. Several cases are simulated by traditional method, finite element method and compared with experimental method for the flow rates and fluid resistances to present the modification of determination results.

Findings

The FEM results for the fixed eight‐section are approximated to actual flow rate and are consistent with the modified determination of the flow rates, and so the modified determinations of the flow rates are verified. When a computer of P4 with 1.8 GHz CPU and 512 MB RAM is utilized, time needed for traditional method or modified formula is fewer than one second. However, more than 4 h is required for FEM by using the same computer.

Originality/value

This study provides the modified method for the determinations of flow rate and fluid resistance in membrane‐type restrictors by using FEM. The FEM results can increase the determination accuracy of the flow rate and restriction coefficient in the design of membrane‐type restrictors.

Details

Industrial Lubrication and Tribology, vol. 59 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 1 of 1
Per page
102050